Upload folder using huggingface_hub
Browse files
Reddit/processed/reddit_graph.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8aed3368b44889670caa82468ea6c78944c6eede3a03891c6b70b56d137db70f
|
| 3 |
+
size 134
|
Reddit/raw/68841_tweets_multiclasses_filtered_0722_part1.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fdc595c36f74073feeb9dea9af01a467dd64743ceec15442085d8c3f2f187339
|
| 3 |
+
size 20623408
|
Reddit/raw/Reddit-processing.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import math
|
| 4 |
+
import pickle as pkl
|
| 5 |
+
import torch
|
| 6 |
+
from torch_geometric.data import Data
|
| 7 |
+
|
| 8 |
+
# Get the directory of the current script
|
| 9 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 10 |
+
base_dir = os.path.dirname(script_dir)
|
| 11 |
+
raw_dir = os.path.join(base_dir, 'processed/original')
|
| 12 |
+
|
| 13 |
+
# Define the file path
|
| 14 |
+
reddit_path = os.path.join(raw_dir, 'reddit_1m.csv')
|
| 15 |
+
|
| 16 |
+
# Read the Reddit data
|
| 17 |
+
df = pd.read_csv(reddit_path)
|
| 18 |
+
print(df.shape)
|
| 19 |
+
|
| 20 |
+
# Select required columns
|
| 21 |
+
df_graph = df[['subreddit_id', 'subreddit', 'name', 'body', 'score', 'author', 'author_flair_text', 'distinguished']]
|
| 22 |
+
df_graph.rename(columns={'name': 'post_id',
|
| 23 |
+
'body': 'post',
|
| 24 |
+
'author': 'user',
|
| 25 |
+
'author_flair_text': 'user_flair'},
|
| 26 |
+
inplace=True, errors='raise')
|
| 27 |
+
|
| 28 |
+
# Drop duplicates, deleted posts, and rows with NaN post_id
|
| 29 |
+
df_graph = df_graph.drop_duplicates()
|
| 30 |
+
df_graph = df_graph[df_graph['post'] != '[deleted]']
|
| 31 |
+
df_graph = df_graph.dropna(subset=['post_id'])
|
| 32 |
+
print(df_graph.shape)
|
| 33 |
+
print(df_graph['post_id'].nunique())
|
| 34 |
+
|
| 35 |
+
# Encode distinguished and user_flair
|
| 36 |
+
df_graph['distinguished'] = df_graph['distinguished'].apply(lambda x: 0 if pd.isna(x) else 1)
|
| 37 |
+
df_graph['user_flair'] = df_graph['user_flair'].apply(lambda x: "" if pd.isna(x) else x)
|
| 38 |
+
|
| 39 |
+
text_nodes = []
|
| 40 |
+
|
| 41 |
+
# Create sub_id2idx
|
| 42 |
+
sub_id2idx = {}
|
| 43 |
+
sub_nodes = []
|
| 44 |
+
for _, row in df_graph.iterrows():
|
| 45 |
+
sub_id = row['subreddit_id']
|
| 46 |
+
if sub_id not in sub_nodes:
|
| 47 |
+
sub_id2idx[sub_id] = len(sub_nodes)
|
| 48 |
+
sub_nodes.append(sub_id)
|
| 49 |
+
text_nodes.append(row['subreddit'])
|
| 50 |
+
node_labels = [-1] * len(sub_nodes) # No labels
|
| 51 |
+
|
| 52 |
+
print("Length of sub nodes:", len(sub_nodes))
|
| 53 |
+
print("Sample sub node labels:", node_labels[:5])
|
| 54 |
+
print("Sample sub node texts:", text_nodes[:5])
|
| 55 |
+
|
| 56 |
+
# Create user_n2idx
|
| 57 |
+
user_n2idx = {} # Username to index mapping
|
| 58 |
+
user_nodes = []
|
| 59 |
+
for _, row in df_graph.iterrows():
|
| 60 |
+
user_n = row['user']
|
| 61 |
+
if user_n in user_nodes: # Existing user: add new flair and update label
|
| 62 |
+
if row['user_flair'] not in text_nodes[user_n2idx[user_n]]:
|
| 63 |
+
text_nodes[user_n2idx[user_n]] += "\n" + row['user_flair']
|
| 64 |
+
node_labels[user_n2idx[user_n]] = max(row['distinguished'], node_labels[user_n2idx[user_n]])
|
| 65 |
+
else: # New user: add the user to user_n2idx
|
| 66 |
+
user_n2idx[user_n] = len(user_nodes) + len(sub_nodes)
|
| 67 |
+
user_nodes.append(user_n)
|
| 68 |
+
text_nodes.append(row['user_flair'])
|
| 69 |
+
node_labels.append(row['distinguished'])
|
| 70 |
+
|
| 71 |
+
print("Length of user nodes:", len(user_nodes))
|
| 72 |
+
print("Sample user node labels:", node_labels[-10:])
|
| 73 |
+
print("Sample user node texts:", text_nodes[-10:])
|
| 74 |
+
|
| 75 |
+
# Record edge information
|
| 76 |
+
edge_index = [[], []]
|
| 77 |
+
text_edges = []
|
| 78 |
+
edge_scr_labels = [] # Continuous score
|
| 79 |
+
edge_spe_labels = [] # Binary special label
|
| 80 |
+
all_edges = set()
|
| 81 |
+
|
| 82 |
+
for _, row in df_graph.iterrows():
|
| 83 |
+
user_idx = user_n2idx[row['user']]
|
| 84 |
+
sub_idx = sub_id2idx[row['subreddit_id']]
|
| 85 |
+
|
| 86 |
+
if (user_idx, sub_idx) not in all_edges: # Only keep one edge between two nodes
|
| 87 |
+
edge_index[0].append(user_idx)
|
| 88 |
+
edge_index[1].append(sub_idx)
|
| 89 |
+
|
| 90 |
+
text_edges.append(row['post'])
|
| 91 |
+
edge_scr_labels.append(row['score'])
|
| 92 |
+
edge_spe_labels.append(row['distinguished'])
|
| 93 |
+
|
| 94 |
+
all_edges.add((user_idx, sub_idx))
|
| 95 |
+
|
| 96 |
+
print("Length of edges:", len(edge_index[0]))
|
| 97 |
+
print("Sample edge score labels:", edge_scr_labels[-10:])
|
| 98 |
+
print("Sample edge special labels:", edge_spe_labels[-10:])
|
| 99 |
+
print("Sample edge texts:", text_edges[-10:])
|
| 100 |
+
|
| 101 |
+
edge_scr_labels = [0 if math.isnan(x) else x for x in edge_scr_labels]
|
| 102 |
+
edge_spe_labels = [0 if math.isnan(x) else x for x in edge_spe_labels]
|
| 103 |
+
|
| 104 |
+
# Save as torch data
|
| 105 |
+
graph = Data(
|
| 106 |
+
text_nodes=text_nodes,
|
| 107 |
+
text_edges=text_edges,
|
| 108 |
+
node_labels=torch.tensor(node_labels, dtype=torch.long),
|
| 109 |
+
edge_index=torch.tensor(edge_index, dtype=torch.long),
|
| 110 |
+
edge_score_labels=torch.tensor(edge_scr_labels, dtype=torch.long),
|
| 111 |
+
edge_special_labels=torch.tensor(edge_spe_labels, dtype=torch.long),
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
output_file = os.path.join(base_dir, 'output/reddit_graph.pkl')
|
| 115 |
+
with open(output_file, 'wb') as file:
|
| 116 |
+
pkl.dump(graph, file)
|
| 117 |
+
|
| 118 |
+
print(f"Data processing complete. Processed data saved to: {output_file}")
|
Reddit/raw/download_data.sh
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Get the directory of the current script
|
| 4 |
+
SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
|
| 5 |
+
BASE_DIR="$(dirname "$SCRIPT_DIR")"
|
| 6 |
+
RAW_DIR="$BASE_DIR/raw"
|
| 7 |
+
|
| 8 |
+
# Create the raw directory
|
| 9 |
+
mkdir -p "$RAW_DIR"
|
| 10 |
+
|
| 11 |
+
# Define URLs of the files to be downloaded
|
| 12 |
+
urls=(
|
| 13 |
+
"https://github.com/YuweiCao-UIC/KPGNN/raw/main/datasets/Twitter/68841_tweets_multiclasses_filtered_0722_part1.npy"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Download each file to the raw directory
|
| 17 |
+
for url in "${urls[@]}"; do
|
| 18 |
+
wget -P "$RAW_DIR" "$url"
|
| 19 |
+
done
|
| 20 |
+
|
| 21 |
+
echo "Download complete."
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|