{ "cells": [ { "cell_type": "code", "execution_count": 7, "id": "2b881572b62f8ce1", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:11:58.339331100Z", "start_time": "2024-10-19T08:11:51.232136400Z" }, "collapsed": false }, "outputs": [], "source": [ "import json\n", "path = \"Apps_for_Android_5.json\"\n", "dict_edge = {} #example: 8842281e1d1347389f2ab93d60773d4d|23310161 : One of my favorite books.\n", "dict_num_to_id = {} # reorder the node's id\n", "edge_score = []\n", "count = 0\n", "review_text = \"Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].\"\n", "with open(path) as f:\n", " for line in f:\n", " d = json.loads(line)\n", " edge = d[\"reviewerID\"] + \"|\" + d[\"asin\"]\n", " try:\n", " reviewtext = review_text.replace(\"[reviewerName]\", d[\"reviewerName\"])\n", " except:\n", " reviewtext = review_text.replace(\"[reviewerName]\", \"\")\n", " if d[\"reviewTime\"] == \"\":\n", " reviewtext = reviewtext.replace(\"[reviewTime]\", \"Unknown reviewtime\")\n", " else:\n", " reviewtext = reviewtext.replace(\"[reviewTime]\", d[\"reviewTime\"])\n", " if d[\"overall\"] == \"\":\n", " reviewtext = reviewtext.replace(\"[rating]\", \"Unknown\")\n", " else:\n", " reviewtext = reviewtext.replace(\"[rating]\", str(d[\"overall\"]))\n", " reviewtext = reviewtext.replace(\"[reviewText]\", d[\"reviewText\"])\n", " if d[\"summary\"] == \"\":\n", " reviewtext = reviewtext.replace(\"[summary]\", \"Unknown\")\n", " else:\n", " reviewtext = reviewtext.replace(\"[summary]\", d[\"summary\"])\n", " dict_edge[edge] = reviewtext\n", " edge_score.append(d[\"overall\"])\n", " if d[\"reviewerID\"] not in dict_num_to_id:\n", " dict_num_to_id[d[\"reviewerID\"]] = count\n", " count += 1\n", " if d[\"asin\"] not in dict_num_to_id:\n", " dict_num_to_id[d[\"asin\"]] = count\n", " count += 1\n", " " ] }, { "cell_type": "code", "execution_count": 8, "id": "3cfd947d", "metadata": {}, "outputs": [], "source": [ "import json\n", "dict_id_to_text = {}\n", "dictid_to_label = {}\n", "node_texts = \"item\"\n", "\n", "with open(\"meta_Apps_for_Android.json\") as f:\n", " for line in f:\n", " d = json.loads(line)\n", " break" ] }, { "cell_type": "code", "execution_count": 10, "id": "acb9e595af870544", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:01.303897900Z", "start_time": "2024-10-19T08:15:00.542531700Z" }, "collapsed": false }, "outputs": [], "source": [ "import json\n", "dict_id_to_text = {}\n", "dictid_to_label = {}\n", "node_texts = \"item\"\n", "\n", "with open(\"meta_Apps_for_Android.json\") as f:\n", " for line in f:\n", " d = json.loads(line)\n", " label_list = []\n", " for x in d[\"categories\"]:\n", " for label in x:\n", " label_list.append(label)\n", " dictid_to_label[d[\"asin\"]] = label_list\n", " product_text = node_texts\n", " '''\n", " product_text = nodes_texts.replace(\"[title]\", d[\"title\"])\n", " category_text = \", \".join(label_list[1:])\n", " product_text = product_text.replace(\"[category]\", category_text)\n", " if d[\"feature\"] == []:\n", " product_text = product_text.replace(\"[feature]\",\"Unknown feature\")\n", " else:\n", " feature_text = \", \".join(d[\"feature\"])\n", " product_text = product_text.replace(\"[feature]\",feature_text)\n", " if d[\"description\"] == []:\n", " product_text = product_text.replace(\"[description]\",\"Unknown description\")\n", " else:\n", " description_text = \", \".join(d[\"description\"])\n", " product_text = product_text.replace(\"[description]\",description_text)\n", " if d[\"fit\"] == \"\":\n", " product_text = product_text.replace(\"[fit]\",\"Unknown fit\")\n", " else:\n", " product_text = product_text.replace(\"[fit]\",d[\"fit\"])\n", " if d[\"price\"] == \"\":\n", " product_text = product_text.replace(\"[price]\",\"Unknown price\")\n", " else:\n", " product_text = product_text.replace(\"[price]\",d[\"price\"])\n", " if d[\"brand\"] == \"\":\n", " product_text = product_text.replace(\"[brand]\",\"Unknown brand\")\n", " else:\n", " product_text = product_text.replace(\"[brand]\",d[\"brand\"])\n", " if d[\"rank\"] == \"\":\n", " product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n", " else:\n", " try:\n", " product_text = product_text.replace(\"[rank]\",d[\"rank\"])\n", " except:\n", " product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n", " if d[\"date\"] == \"\":\n", " product_text = product_text.replace(\"[date]\",\"Unknown date\")\n", " else:\n", " product_text = product_text.replace(\"[date]\",d[\"date\"])\n", " if d[\"imageURL\"] == []:\n", " product_text = product_text.replace(\"[imageURL]\",\"Unknown imageURL\")\n", " else:\n", " imageURL_text = \", \".join(d[\"imageURL\"])\n", " product_text = product_text.replace(\"[imageURL]\",imageURL_text)\n", " if d[\"imageURLHighRes\"] == []:\n", " product_text = product_text.replace(\"[imageURLHighRes]\",\"Unknown imageURLHighRes\")\n", " else:\n", " imageURLHighRes_text = \", \".join(d[\"imageURLHighRes\"])\n", " product_text = product_text.replace(\"[imageURLHighRes]\",imageURLHighRes_text)\n", " '''\n", " dict_id_to_text[d[\"asin\"]] = product_text" ] }, { "cell_type": "code", "execution_count": 11, "id": "5e69e274cb42bf36", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:01.999784800Z", "start_time": "2024-10-19T08:15:01.989277300Z" }, "collapsed": false }, "outputs": [], "source": [ "edge1 = [] \n", "edge2 = [] # edge1 edge2 are to generate edge_index\n", "text_nodes = [None] * len(dict_num_to_id)\n", "text_edges = []\n", "text_node_labels = [-1] * len(dict_num_to_id)" ] }, { "cell_type": "code", "execution_count": 12, "id": "f2adedbc870feda", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:04.385748Z", "start_time": "2024-10-19T08:15:02.732806400Z" }, "collapsed": false }, "outputs": [], "source": [ "for edge, edge_text in dict_edge.items():\n", " node1 = edge.split(\"|\")[0]\n", " node2 = edge.split(\"|\")[1]\n", " node1_id = int(dict_num_to_id[node1])\n", " node2_id = int(dict_num_to_id[node2])\n", " edge1.append(node1_id)\n", " edge2.append(node2_id)\n", " text_nodes[node1_id] = \"reviewer\"\n", " try:\n", " text_nodes[node2_id] = dict_id_to_text[node2]\n", " except:\n", " text_nodes[node2_id] = \"Unknown node texts\"\n", " text_edges.append(edge_text)\n", " try:\n", " text_node_labels[node2_id] = dictid_to_label[node2]\n", " except:\n", " text_node_labels[node2_id] = -1" ] }, { "cell_type": "code", "execution_count": 14, "id": "3305934f1a11caa7", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:04.410284900Z", "start_time": "2024-10-19T08:15:04.384747Z" }, "collapsed": false }, "outputs": [], "source": [ "from torch_geometric.data import Data\n", "import torch" ] }, { "cell_type": "code", "execution_count": 15, "id": "5030fa8672f2b177", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:04.678317100Z", "start_time": "2024-10-19T08:15:04.398293500Z" }, "collapsed": false }, "outputs": [], "source": [ "edge_index = torch.tensor([edge1,edge2])" ] }, { "cell_type": "code", "execution_count": 16, "id": "21085a8a04df7062", "metadata": { "ExecuteTime": { "end_time": "2024-10-19T08:15:04.696139900Z", "start_time": "2024-10-19T08:15:04.683323900Z" }, "collapsed": false }, "outputs": [], "source": [ "new_data = Data(\n", " edge_index=edge_index,\n", " text_nodes=text_nodes,\n", " text_edges=text_edges,\n", " text_node_labels=text_node_labels,\n", " edge_score=edge_score\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "id": "d39601d90a0171c5", "metadata": { "collapsed": false, "is_executing": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data saved to ../processed/apps.pkl\n" ] } ], "source": [ "import pickle\n", "output_file_path = '../processed/apps.pkl'\n", "with open(output_file_path, 'wb') as output_file:\n", " pickle.dump(new_data, output_file)\n", "\n", "print(f\"Data saved to {output_file_path}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "60f52e9317cfad61", "metadata": { "collapsed": false, "is_executing": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "4aaa10c4d649044a", "metadata": { "collapsed": false, "is_executing": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }