{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import math\n", "import pickle as pkl\n", "\n", "from torch_geometric.data import Data\n", "import torch\n", "import tqdm" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_5327/3476166533.py:2: DtypeWarning: Columns (2,3,4,6,7,8,9,14,17,18,21) have mixed types. Specify dtype option on import or set low_memory=False.\n", " df = pd.read_csv(\"reddit.csv\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "(1070077, 22)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_5327/3476166533.py:18: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_graph.rename(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "(256388, 8)\n" ] } ], "source": [ "## Preprocessing\n", "df = pd.read_csv(\"reddit.csv\")\n", "print(df.shape)\n", "\n", "# select columns\n", "df_graph = df[\n", " [\n", " \"subreddit_id\",\n", " \"subreddit\",\n", " \"name\",\n", " \"body\",\n", " \"score\",\n", " \"author\",\n", " \"author_flair_text\",\n", " \"distinguished\",\n", " ]\n", "]\n", "df_graph.rename(\n", " columns={\n", " \"name\": \"post_id\",\n", " \"body\": \"post\",\n", " \"author\": \"user\",\n", " \"author_flair_text\": \"user_flair\",\n", " },\n", " inplace=True,\n", " errors=\"raise\",\n", ")\n", "\n", "# drop na, duplicates and deleted post\n", "df_graph = df_graph.drop_duplicates()\n", "df_graph = df_graph[df_graph[\"post\"] != \"[deleted]\"]\n", "df_graph = df_graph.dropna(subset=[\"post_id\"])\n", "df_graph = df_graph.dropna(subset=[\"user_flair\"])\n", "df_graph = df_graph.dropna(subset=[\"subreddit\"])\n", "df_graph = df_graph.dropna(subset=[\"post\"])\n", "print(df_graph.shape)\n", "\n", "df_graph[\"distinguished\"] = df_graph[\"distinguished\"].apply(\n", " lambda x: \"ordinary\" if pd.isna(x) else \"distinguished\"\n", ")\n", "df_graph[\"user_flair\"] = df_graph[\"user_flair\"].apply(lambda x: \"\" if pd.isna(x) else x)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | subreddit_id | \n", "subreddit | \n", "post_id | \n", "post | \n", "score | \n", "user | \n", "user_flair | \n", "distinguished | \n", "
---|---|---|---|---|---|---|---|---|
3 | \n", "t5_2qhon | \n", "comicbooks | \n", "t1_cqug9dk | \n", "It's not contradictory. Snyder's rendition of ... | \n", "1.0 | \n", "eskimo_bros | \n", "Luke Cage | \n", "ordinary | \n", "