File size: 6,223 Bytes
e57e5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7339fcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
license: apache-2.0
task_categories:
- text-retrieval
language:
- en
tags:
- information-retrieval
- reranking
- temporal-evaluation
- benchmark
size_categories:
- 1K<n<10K
pretty_name: Reranking, Retreiver
---

# FutureQueryEval Dataset (EMNLP 2025)🔍

## Dataset Description

**FutureQueryEval** is a novel Information Retrieval (IR) benchmark designed to evaluate reranker performance on temporal novelty. It comprises **148 queries** with **2,938 query-document pairs** across **7 topical categories**, specifically created to test how well reranking models generalize to truly novel queries that were unseen during LLM pretraining.

### Key Features

- **Zero Contamination**: All queries refer to events after April 2025
- **Human Annotated**: Created by 4 expert annotators with quality control
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment  
- **Real Events**: Based on actual news and developments, not synthetic data
- **Temporal Novelty**: First benchmark designed to test reranker generalization on post-training events

## Dataset Statistics

| Metric | Value |
|--------|-------|
| Total Queries | 148 |
| Total Documents | 2,787 |
| Query-Document Pairs | 2,938 |
| Avg. Relevant Docs per Query | 6.54 |
| Languages | English |
| License | Apache-2.0 |

## Category Distribution

| Category | Queries | Percentage |
|----------|---------|------------|
| **Technology** | 37 | 25.0% |
| **Sports** | 31 | 20.9% |
| **Science & Environment** | 20 | 13.5% |
| **Business & Finance** | 19 | 12.8% |
| **Health & Medicine** | 16 | 10.8% |
| **World News & Politics** | 14 | 9.5% |
| **Entertainment & Culture** | 11 | 7.4% |

## Dataset Structure

The dataset consists of three main files:

### Files

- **`queries.tsv`**: Contains the query information
  - Columns: `query_id`, `query_text`, `category`
- **`corpus.tsv`**: Contains the document collection  
  - Columns: `doc_id`, `title`, `text`, `url`
- **`qrels.txt`**: Contains relevance judgments
  - Format: `query_id 0 doc_id relevance_score`

### Data Fields

#### Queries
- `query_id` (string): Unique identifier for each query
- `query_text` (string): The natural language query
- `category` (string): Topical category (Technology, Sports, etc.)

#### Corpus
- `doc_id` (string): Unique identifier for each document
- `title` (string): Document title
- `text` (string): Full document content
- `url` (string): Source URL of the document

#### Relevance Judgments (qrels)
- `query_id` (string): Query identifier
- `iteration` (int): Always 0 (standard TREC format)
- `doc_id` (string): Document identifier  
- `relevance` (int): Relevance score (0-3, where 3 is highly relevant)

## Example Queries

**🌍 World News & Politics:**
> "What specific actions has Egypt taken to support injured Palestinians from Gaza, as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"

**⚽ Sports:**
> "Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"

**💻 Technology:**
> "What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("abdoelsayed/FutureQueryEval")

# Access different splits
queries = dataset["queries"]
corpus = dataset["corpus"] 
qrels = dataset["qrels"]

# Example: Get first query
print(f"Query: {queries[0]['query_text']}")
print(f"Category: {queries[0]['category']}")
```

### Evaluation Example

```python
import pandas as pd

# Load relevance judgments
qrels_df = pd.read_csv("qrels.txt", sep=" ", 
                      names=["query_id", "iteration", "doc_id", "relevance"])

# Filter for a specific query
query_rels = qrels_df[qrels_df["query_id"] == "FQ001"]
print(f"Relevant documents for query FQ001: {len(query_rels)}")
```

## Methodology

### Data Collection Process

1. **Source Selection**: Major news outlets, official sites, sports organizations
2. **Temporal Filtering**: Events after April 2025 only  
3. **Query Creation**: Manual generation by domain experts
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
5. **Quality Control**: Multi-annotator review with senior oversight

### Annotation Guidelines

- **Highly Relevant (3)**: Document directly answers the query
- **Relevant (2)**: Document partially addresses the query  
- **Marginally Relevant (1)**: Document mentions query topics but lacks detail
- **Not Relevant (0)**: Document does not address the query

## Research Applications

This dataset is designed for:

- **Reranker Evaluation**: Testing generalization to novel content
- **Temporal IR Research**: Understanding time-sensitive retrieval challenges
- **Domain Robustness**: Evaluating cross-domain performance
- **Contamination Studies**: Clean evaluation on post-training data

## Benchmark Results

Top performing methods on FutureQueryEval:

| Method | Type | NDCG@10 | Runtime (s) |
|--------|------|---------|-------------|
| Zephyr-7B | Listwise | **62.65** | 1,240 |
| MonoT5-3B | Pointwise | **60.75** | 486 |
| Flan-T5-XL | Setwise | **56.57** | 892 |

## Dataset Updates

FutureQueryEval will be updated every 6 months with new queries about recent events to maintain temporal novelty:

- **Version 1.1** (December 2025): +100 queries from July-September 2025
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026

## Citation

If you use FutureQueryEval in your research, please cite:

```bibtex
@misc{abdallah2025good,
    title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
    author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt},
    year={2025},
    eprint={2508.16757},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## Contact

- **Authors**: Abdelrahman Abdallah, Bhawna Piryani
- **Institution**: University of Innsbruck
- **Paper**: [arXiv:2508.16757](https://arxiv.org/abs/2508.16757)
- **Code**: [GitHub Repository](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)

## License

This dataset is released under the Apache-2.0 License.