Datasets:
File size: 7,411 Bytes
d719845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: mit
task_categories:
- text-ranking
language:
- en
tags:
- information-retrieval
- reranking
- llm
- benchmark
- temporal
- llm-reranking
---
# How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models 🔍
This repository contains the **FutureQueryEval Dataset** presented in the paper [How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models](https://huggingface.co/papers/2508.16757).
Code: [https://github.com/DataScienceUIBK/llm-reranking-generalization-study](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)
Project Page / Leaderboard: [https://rankarena.ngrok.io](https://rankarena.ngrok.io)
## 🎉 News
- **[2025-08-22]** 🎯 **FutureQueryEval Dataset Released!** - The first temporal IR benchmark with queries from April 2025+
- **[2025-08-22]** 🔧 Comprehensive evaluation framework released - 22 reranking methods, 40 variants tested
- **[2025-08-22]** 📊 Integrated with [RankArena](https://arxiv.org/abs/2508.05512) leaderboard. You can view and interact with RankArena through this [link](https://rankarena.ngrok.io)
- **[2025-08-20]** 📝 Paper accepted at EMNLP Findings 2025
## 📖 Introduction
We present the **most comprehensive empirical study of reranking methods** to date, systematically evaluating 22 state-of-the-art approaches across 40 variants. Our key contribution is **FutureQueryEval** - the first temporal benchmark designed to test reranker generalization on truly novel queries unseen during LLM pretraining.
<div align="center">
<img src="https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/figures/radar.jpg" alt="Performance Overview" width="600"/>
<p><em>Performance comparison across pointwise, pairwise, and listwise reranking paradigms</em></p>
</div>
### Key Findings 🔍
- **Temporal Performance Gap**: 5-15% performance drop on novel queries compared to standard benchmarks
- **Listwise Superiority**: Best generalization to unseen content (8% avg. degradation vs 12-15% for others)
- **Efficiency Trade-offs**: Comprehensive runtime analysis reveals optimal speed-accuracy combinations
- **Domain Vulnerabilities**: All methods struggle with argumentative and informal content
# 📄 FutureQueryEval Dataset
## Overview
**FutureQueryEval** is a novel IR benchmark comprising **148 queries** with **2,938 query-document pairs** across **7 topical categories**, designed to evaluate reranker performance on temporal novelty.
### 🎯 Why FutureQueryEval?
- **Zero Contamination**: All queries refer to events after April 2025
- **Human Annotated**: 4 expert annotators with quality control
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment
- **Real Events**: Based on actual news and developments, not synthetic data
### 📊 Dataset Statistics
| Metric | Value |
|--------|-------|
| Total Queries | 148 |
| Total Documents | 2,787 |
| Query-Document Pairs | 2,938 |
| Avg. Relevant Docs per Query | 6.54 |
| Languages | English |
| License | MIT |
### 🌍 Category Distribution
- **Technology**: 25.0% (37 queries)
- **Sports**: 20.9% (31 queries)
- **Science & Environment**: 13.5% (20 queries)
- **Business & Finance**: 12.8% (19 queries)
- **Health & Medicine**: 10.8% (16 queries)
- **World News & Politics**: 9.5% (14 queries)
- **Entertainment & Culture**: 7.4% (11 queries)
### 📝 Example Queries
```
🌍 World News & Politics:
"What specific actions has Egypt taken to support injured Palestinians from Gaza,
as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"
⚽ Sports:
"Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"
💻 Technology:
"What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"
```
## Data Collection Methodology
1. **Source Selection**: Major news outlets, official sites, sports organizations
2. **Temporal Filtering**: Events after April 2025 only
3. **Query Creation**: Manual generation by domain experts
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
5. **Quality Control**: Multi-annotator review with senior oversight
# 📊 Evaluation Results
## Top Performers on FutureQueryEval
| Method Category | Best Model | NDCG@10 | Runtime (s) |
|----------------|------------|---------|-------------|
| **Listwise** | Zephyr-7B | **62.65** | 1,240 |
| **Pointwise** | MonoT5-3B | **60.75** | 486 |
| **Setwise** | Flan-T5-XL | **56.57** | 892 |
| **Pairwise** | EchoRank-XL | **54.97** | 2,158 |
| **Tournament** | TourRank-GPT4o | **62.02** | 3,420 |
## Performance Insights
- 🏆 **Best Overall**: Zephyr-7B (62.65 NDCG@10)
- ⚡ **Best Efficiency**: FlashRank-MiniLM (55.43 NDCG@10, 195s)
- 🎯 **Best Balance**: MonoT5-3B (60.75 NDCG@10, 486s)
<div align="center">
<img src="https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/figures/efficiency_tradeoff.png.jpg" alt="Efficiency Analysis" width="700"/>
<p><em>Runtime vs. Performance trade-offs across reranking methods</em></p>
</div>
# 🔧 Supported Methods
We evaluate **22 reranking approaches** across multiple paradigms:
### Pointwise Methods
- MonoT5, RankT5, InRanker, TWOLAR
- FlashRank, Transformer Rankers
- UPR, MonoBERT, ColBERT
### Listwise Methods
- RankGPT, ListT5, Zephyr, Vicuna
- LiT5-Distill, InContext Rerankers
### Pairwise Methods
- PRP (Pairwise Ranking Prompting)
- EchoRank
### Advanced Methods
- Setwise (Flan-T5 variants)
- TourRank (Tournament-based)
- RankLLaMA (Task-specific fine-tuned)
# 🔄 Dataset Updates
**FutureQueryEval will be updated every 6 months** with new queries about recent events to maintain temporal novelty. Subscribe to releases for notifications!
## Upcoming Updates
- **Version 1.1** (December 2025): +100 queries from July-September 2025 events
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026 events
# 📋 Leaderboard
Submit your reranking method results to appear on our leaderboard! See [SUBMISSION.md](https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/SUBMISSION.md) for guidelines.
Current standings available at: [RanArena](https://rankarena.ngrok.io)
# 🤝 Contributing
We welcome contributions! See [CONTRIBUTING.md](https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/CONTRIBUTING.md) for:
- Adding new reranking methods
- Improving evaluation metrics
- Dataset quality improvements
- Bug fixes and optimizations
# 🎈 Citation
If you use FutureQueryEval or our evaluation framework, please cite:
```bibtex
@misc{abdallah2025howgoodarellmbasedrerankers,
title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
author={Abdelrahman Abdallah and Bhawna Piryani},
year={2025},
eprint={2508.16757},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
# 📞 Contact
- **Authors**: [Abdelrahman Abdallah](mailto:[email protected]), [Bhawna Piryani](mailto:[email protected])
- **Institution**: University of Innsbruck
- **Issues**: Please use GitHub Issues for bug reports and feature requests
---
<div align="center">
<p>⭐ Star this repo if you find it helpful! ⭐</p>
<p>📧 Questions? Open an issue or contact the authors</p>
</div> |