File size: 7,411 Bytes
d719845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: mit
task_categories:
- text-ranking
language:
- en
tags:
- information-retrieval
- reranking
- llm
- benchmark
- temporal
- llm-reranking
---

# How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models 🔍

This repository contains the **FutureQueryEval Dataset** presented in the paper [How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models](https://huggingface.co/papers/2508.16757).

Code: [https://github.com/DataScienceUIBK/llm-reranking-generalization-study](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)

Project Page / Leaderboard: [https://rankarena.ngrok.io](https://rankarena.ngrok.io)

## 🎉 News
- **[2025-08-22]** 🎯 **FutureQueryEval Dataset Released!** - The first temporal IR benchmark with queries from April 2025+
- **[2025-08-22]** 🔧 Comprehensive evaluation framework released - 22 reranking methods, 40 variants tested
- **[2025-08-22]** 📊 Integrated with [RankArena](https://arxiv.org/abs/2508.05512) leaderboard. You can view and interact with RankArena through this [link](https://rankarena.ngrok.io)
- **[2025-08-20]** 📝 Paper accepted at EMNLP Findings 2025

## 📖 Introduction

We present the **most comprehensive empirical study of reranking methods** to date, systematically evaluating 22 state-of-the-art approaches across 40 variants. Our key contribution is **FutureQueryEval** - the first temporal benchmark designed to test reranker generalization on truly novel queries unseen during LLM pretraining.

<div align="center">
<img src="https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/figures/radar.jpg" alt="Performance Overview" width="600"/>
<p><em>Performance comparison across pointwise, pairwise, and listwise reranking paradigms</em></p>
</div>

### Key Findings 🔍
- **Temporal Performance Gap**: 5-15% performance drop on novel queries compared to standard benchmarks
- **Listwise Superiority**: Best generalization to unseen content (8% avg. degradation vs 12-15% for others)
- **Efficiency Trade-offs**: Comprehensive runtime analysis reveals optimal speed-accuracy combinations
- **Domain Vulnerabilities**: All methods struggle with argumentative and informal content

# 📄 FutureQueryEval Dataset

## Overview
**FutureQueryEval** is a novel IR benchmark comprising **148 queries** with **2,938 query-document pairs** across **7 topical categories**, designed to evaluate reranker performance on temporal novelty.

### 🎯 Why FutureQueryEval?
- **Zero Contamination**: All queries refer to events after April 2025
- **Human Annotated**: 4 expert annotators with quality control
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment
- **Real Events**: Based on actual news and developments, not synthetic data

### 📊 Dataset Statistics
| Metric | Value |
|--------|-------|
| Total Queries | 148 |
| Total Documents | 2,787 |
| Query-Document Pairs | 2,938 |
| Avg. Relevant Docs per Query | 6.54 |
| Languages | English |
| License | MIT |

### 🌍 Category Distribution
- **Technology**: 25.0% (37 queries)
- **Sports**: 20.9% (31 queries)  
- **Science & Environment**: 13.5% (20 queries)
- **Business & Finance**: 12.8% (19 queries)
- **Health & Medicine**: 10.8% (16 queries)
- **World News & Politics**: 9.5% (14 queries)
- **Entertainment & Culture**: 7.4% (11 queries)

### 📝 Example Queries
```
🌍 World News & Politics:
"What specific actions has Egypt taken to support injured Palestinians from Gaza, 
as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"

⚽ Sports:
"Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"

💻 Technology:
"What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"
```

## Data Collection Methodology
1. **Source Selection**: Major news outlets, official sites, sports organizations
2. **Temporal Filtering**: Events after April 2025 only
3. **Query Creation**: Manual generation by domain experts
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
5. **Quality Control**: Multi-annotator review with senior oversight

# 📊 Evaluation Results

## Top Performers on FutureQueryEval

| Method Category | Best Model | NDCG@10 | Runtime (s) |
|----------------|------------|---------|-------------|
| **Listwise** | Zephyr-7B | **62.65** | 1,240 |
| **Pointwise** | MonoT5-3B | **60.75** | 486 |
| **Setwise** | Flan-T5-XL | **56.57** | 892 |
| **Pairwise** | EchoRank-XL | **54.97** | 2,158 |
| **Tournament** | TourRank-GPT4o | **62.02** | 3,420 |

## Performance Insights
- 🏆 **Best Overall**: Zephyr-7B (62.65 NDCG@10)
-**Best Efficiency**: FlashRank-MiniLM (55.43 NDCG@10, 195s)
- 🎯 **Best Balance**: MonoT5-3B (60.75 NDCG@10, 486s)

<div align="center">
<img src="https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/figures/efficiency_tradeoff.png.jpg" alt="Efficiency Analysis" width="700"/>
<p><em>Runtime vs. Performance trade-offs across reranking methods</em></p>
</div>

# 🔧 Supported Methods

We evaluate **22 reranking approaches** across multiple paradigms:

### Pointwise Methods
- MonoT5, RankT5, InRanker, TWOLAR
- FlashRank, Transformer Rankers
- UPR, MonoBERT, ColBERT

### Listwise Methods  
- RankGPT, ListT5, Zephyr, Vicuna
- LiT5-Distill, InContext Rerankers

### Pairwise Methods
- PRP (Pairwise Ranking Prompting)
- EchoRank

### Advanced Methods
- Setwise (Flan-T5 variants)
- TourRank (Tournament-based)
- RankLLaMA (Task-specific fine-tuned)

# 🔄 Dataset Updates

**FutureQueryEval will be updated every 6 months** with new queries about recent events to maintain temporal novelty. Subscribe to releases for notifications!

## Upcoming Updates
- **Version 1.1** (December 2025): +100 queries from July-September 2025 events
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026 events

# 📋 Leaderboard

Submit your reranking method results to appear on our leaderboard! See [SUBMISSION.md](https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/SUBMISSION.md) for guidelines.

Current standings available at: [RanArena](https://rankarena.ngrok.io) 

# 🤝 Contributing

We welcome contributions! See [CONTRIBUTING.md](https://github.com/DataScienceUIBK/llm-reranking-generalization-study/blob/main/CONTRIBUTING.md) for:
- Adding new reranking methods
- Improving evaluation metrics  
- Dataset quality improvements
- Bug fixes and optimizations

# 🎈 Citation

If you use FutureQueryEval or our evaluation framework, please cite:

```bibtex
@misc{abdallah2025howgoodarellmbasedrerankers,
      title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
      author={Abdelrahman Abdallah and Bhawna Piryani},
      year={2025},
      eprint={2508.16757},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
```

# 📞 Contact

- **Authors**: [Abdelrahman Abdallah](mailto:[email protected]), [Bhawna Piryani](mailto:[email protected])
- **Institution**: University of Innsbruck
- **Issues**: Please use GitHub Issues for bug reports and feature requests

---

<div align="center">
<p>⭐ Star this repo if you find it helpful! ⭐</p>
<p>📧 Questions? Open an issue or contact the authors</p>
</div>