--- license: mit --- The dataset used to train and evaluate [ReT](https://www.arxiv.org/abs/2503.01980) for multimodal information retrieval. The dataset is almost the same as the original M2KR, with a few modifications: - we exlude any data from MSMARCO, as it does not contain query images; - we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details. ## Sources - **Repository:** https://github.com/aimagelab/ReT - **Paper:** [Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval](https://www.arxiv.org/abs/2503.01980) (CVPR 2025) ## Download images (coming soon) 1. Initialize git LFS ``` git lfs install ``` 2. Clone the repository (it will take a lot) ``` git clone https://huggingface.co/datasets/aimagelab/ReT-M2KR ``` 3. Decompress images (it will take a lot, again) ``` cat ret-img-{000..129}.tar.gz | tar xzf - ``` ## Citation **BibTeX:** ``` @inproceedings{caffagni2025recurrence, title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}}, author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year={2025} } ```