File size: 32,249 Bytes
ba32b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
import os
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn, autograd ##### modified
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import numpy as np
from utils import common, train_utils
from criteria import id_loss, w_norm, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from models.stylegan2.model import Discriminator ##### modified
from training.ranger import Ranger
from models.stylegan2.simple_augment import random_apply_affine
from datasets.ffhq_degradation_dataset import FFHQDegradationDataset ##### modified, for blind SR
class Coach:
def __init__(self, opts):
self.opts = opts
self.global_step = 0
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
self.opts.device = self.device
if self.opts.use_wandb:
from utils.wandb_utils import WBLogger
self.wb_logger = WBLogger(self.opts)
# Initialize network
self.net = pSp(self.opts).to(self.device)
if self.opts.adv_lambda > 0: ##### modified, add discriminator
self.discriminator = Discriminator(1024, channel_multiplier=2, img_channel=3)
if self.opts.checkpoint_path is not None:
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
if 'discriminator' in ckpt.keys():
print('Loading discriminator from checkpoint: {}'.format(self.opts.checkpoint_path))
self.discriminator.load_state_dict(ckpt['discriminator'], strict=False)
self.discriminator = self.discriminator.to(self.device)
self.discriminator_optimizer = torch.optim.Adam(list(self.discriminator.parameters()),
lr=self.opts.learning_rate)
# Estimate latent_avg via dense sampling if latent_avg is not available
if self.net.latent_avg is None:
self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach()
# Initialize loss
if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!')
self.mse_loss = nn.MSELoss().to(self.device).eval()
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
if self.opts.id_lambda > 0:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
if self.opts.w_norm_lambda > 0:
self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg)
if self.opts.moco_lambda > 0:
self.moco_loss = moco_loss.MocoLoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
# for sketch/mask-to-face translation, indicate which layers from x, which layers from y
if self.opts.use_latent_mask: ##### modified
self.latent_mask = [int(l) for l in self.opts.latent_mask.split(",")]
# for video face editing, the editing vector v
self.editing_w = None
if self.opts.editing_w_path is not None:
self.editing_w = torch.load(self.opts.editing_w_path).to(self.device)
# for video face editing, to augment face attribute when generating training data
self.directions = None
if self.opts.direction_path is not None:
self.directions = torch.load(self.opts.direction_path).to(self.device)
def train(self):
self.net.train()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
self.optimizer.zero_grad()
#************************ Data Preparation **************************
# x is the input, y is the ground truth
# the faces in x and y are aligned, we will apply geometric transformation to make them unaligned.
x, y = batch
# for video face editing, generating paired data (x,y)
editing_w = None
if self.opts.generate_training_data and self.editing_w is not None:
with torch.no_grad():
noise_sample = torch.randn(x.shape[0], 512).to(self.device)
ws = self.net.decoder.style(noise_sample).unsqueeze(1).repeat(1,18,1)
ws = ws + self.directions[torch.randint(0, self.directions.shape[0], (x.shape[0],))]
x, _ = self.net.decoder([ws], input_is_latent=True, truncation=0.75, truncation_latent=0, randomize_noise=False)
x = F.adaptive_avg_pool2d(x, (x.shape[2]//4, x.shape[3]//4)).detach()
scale_factor = np.random.choice([0.0,0.25,0.5,0.75,1.0,1.25], 1)[0]
editing_w = self.editing_w[torch.randint(0, self.editing_w.shape[0], (1,))] * scale_factor
y, _ = self.net.decoder([ws], input_is_latent=True, truncation=0.75, truncation_latent=0,
randomize_noise=False, editing_w=editing_w)
y = y.detach()
x, y = x.to(self.device).float(), y.to(self.device).float()
# the shape of y should be H*W or H/8*W/8, the shape of x should always be H/8*W/8
scale = int(y.shape[2] // x.shape[2])
assert(int(y.shape[3] // x.shape[3]) == scale)
# prepare aligned images for w+ extraction
x_tilde = None
y_tilde = y.clone() if scale ==1 else F.interpolate(y, (x.shape[2], x.shape[3]), mode='bilinear')
# crop the centered 256*256 region from a H/8*W/8 image
if self.opts.crop_face:
crop_size = int((x.shape[2] - 256) // 2)
x_tilde = x.clone()
if crop_size > 0:
x_tilde = x_tilde[:,:,crop_size:-crop_size,crop_size:-crop_size]
if self.opts.use_latent_mask:
y_tilde = y_tilde[:,:,crop_size:-crop_size,crop_size:-crop_size]
# for flicker suppression loss in video-related tasks
y0_hat = None
if self.opts.tmp_lambda > 0 and self.global_step * 2 >= self.opts.max_steps:
if self.opts.use_latent_mask: # for sketch/mask-to-face translation. not used in the paper
y0_hat = self.net.forward(x1=x, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
latent_mask=self.latent_mask, inject_latent=self.net.encoder(y_tilde),
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w)
else:
y0_hat = self.net.forward(x1=x, x2=x_tilde, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w)
# making the faces unaligned for the following training
if self.opts.affine_augment:
x, affine_T = random_apply_affine(x, 0.2, None)
y, _ = random_apply_affine(y, 1.0, affine_T)
x = x.detach()
y = y.detach()
if y0_hat is not None and self.opts.tmp_lambda > 0:
y0_hat, _ = random_apply_affine(y0_hat, 1.0, affine_T)
# making the resolution of the image variable
if self.opts.random_crop:
_, _, h, w = x.shape
th, tw = torch.randint(32, 41, size=(1,)).item() * 8, torch.randint(32, 41, size=(1,)).item() * 8
i, j = torch.randint(0, h - th + 1, size=(1,)).item(), torch.randint(0, w - tw + 1, size=(1,)).item()
x = x[:,:,i:i+th,j:j+tw].detach()
y = y[:,:,i*scale:(i+th)*scale,j*scale:(j+tw)*scale].detach()
if y0_hat is not None and self.opts.tmp_lambda > 0:
y0_hat = y0_hat[:,:,i*scale:(i+th)*scale,j*scale:(j+tw)*scale]
# if opts.crop_face=False, using unaligned faces to extract w+
if self.opts.use_latent_mask and (not self.opts.crop_face):
y_tilde = y.clone() if scale == 1 else F.interpolate(y, (x.shape[2], x.shape[3]), mode='bilinear')
# Now we have prepare the input data (x,x_tilde,y_tilde) and ground truth data (y, y0_hat)
# x is the input image, y is the ground truth output
# (if opts.crop_face=True) x_tilde is the cropped aligned version of x, y_tilde is the cropped aligned version of y
# y0_hat is the geometrically transformed output, which is used to suppress flickers
#************************ generate y_hat given the data **************************
# y_hat is the output image, latent is the extracted w+
if self.opts.use_latent_mask: # for sketch/mask-to-face translation
y_hat, latent = self.net.forward(x1=x, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
latent_mask=self.latent_mask, inject_latent=self.net.encoder(y_tilde),
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w, return_latents=True)
else: # for other tasks
y_hat, latent = self.net.forward(x1=x, x2=x_tilde, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w, return_latents=True)
# adversarial loss
if self.opts.adv_lambda > 0:
d_loss_dict = self.train_discriminator(y, y_hat)
# calculate losses
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent, y0_hat)
if self.opts.adv_lambda > 0:
loss_dict = {**d_loss_dict, **loss_dict}
loss.backward()
self.optimizer.step()
#************************ logging and saving model**************************
# Logging related
with torch.no_grad(): ##### modified for SR task, since x, y and y_hat may have different resolution
y = F.adaptive_avg_pool2d(y, (x.shape[2], x.shape[3]))
y_hat = F.adaptive_avg_pool2d(y_hat, (x.shape[2], x.shape[3]))
x = torch.clamp(x, -1, 1)
if self.global_step % self.opts.image_interval == 0 or (self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="train", step=self.global_step, opts=self.opts)
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
x, y = batch
editing_w = None
if self.editing_w is not None:
editing_w = self.editing_w[torch.randint(0, self.editing_w.shape[0], (1,))]
with torch.no_grad():
x, y = x.to(self.device).float(), y.to(self.device).float()
scale = int(y.shape[2] // x.shape[2])
assert(int(y.shape[3] // x.shape[3]) == scale)
# prepare aligned images for w+ extraction
x_tilde = None
y_tilde = y.clone() if scale ==1 else F.interpolate(y, (x.shape[2], x.shape[3]), mode='bilinear')
# crop the centered 256*256 region from a H/8*W/8 image
if self.opts.crop_face:
crop_size = int((x.shape[2] - 256) // 2)
x_tilde = x.clone()
if crop_size > 0:
x_tilde = x_tilde[:,:,crop_size:-crop_size,crop_size:-crop_size]
if self.opts.use_latent_mask:
y_tilde = y_tilde[:,:,crop_size:-crop_size,crop_size:-crop_size]
# for flicker suppression loss in video-related tasks
y0_hat = None
if self.opts.tmp_lambda > 0 and self.global_step * 2 >= self.opts.max_steps:
if self.opts.use_latent_mask: # for sketch/mask-to-face translation. not used in the paper
y0_hat = self.net.forward(x1=x, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
latent_mask=self.latent_mask, inject_latent=self.net.encoder(y_tilde),
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w)
else:
y0_hat = self.net.forward(x1=x, x2=x_tilde, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w)
y0_hat = y0_hat.detach()
# making the faces unaligned for the following training
if self.opts.affine_augment:
x, affine_T = random_apply_affine(x, 0.2, None)
y, _ = random_apply_affine(y, 1.0, affine_T)
x = x.detach()
y = y.detach()
if y0_hat is not None and self.opts.tmp_lambda > 0:
y0_hat, _ = random_apply_affine(y0_hat, 1.0, affine_T)
y0_hat = y0_hat.detach()
# making the resolution of the image variable
if self.opts.random_crop:
_, _, h, w = x.shape
th, tw = torch.randint(32, 41, size=(1,)).item() * 8, torch.randint(32, 41, size=(1,)).item() * 8
i, j = torch.randint(0, h - th + 1, size=(1,)).item(), torch.randint(0, w - tw + 1, size=(1,)).item()
x = x[:,:,i:i+th,j:j+tw].detach()
y = y[:,:,i*scale:(i+th)*scale,j*scale:(j+tw)*scale].detach()
if y0_hat is not None and self.opts.tmp_lambda > 0:
y0_hat = y0_hat[:,:,i*scale:(i+th)*scale,j*scale:(j+tw)*scale].detach()
# if opts.crop_face=False, using unaligned faces to extract w+
if self.opts.use_latent_mask and (not self.opts.crop_face):
y_tilde = y.clone() if scale == 1 else F.interpolate(y, (x.shape[2], x.shape[3]), mode='bilinear')
# y_hat is the output image, latent is the extracted w+
if self.opts.use_latent_mask: # for sketch/mask-to-face translation
y_hat, latent = self.net.forward(x1=x, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
latent_mask=self.latent_mask, inject_latent=self.net.encoder(y_tilde),
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w, return_latents=True)
else: # for other tasks
y_hat, latent = self.net.forward(x1=x, x2=x_tilde, resize=(x.shape[2:]==y.shape[2:]), zero_noise=self.opts.zero_noise,
first_layer_feature_ind=self.opts.feat_ind, use_skip=self.opts.use_skip,
editing_w=editing_w, return_latents=True)
# adversarial loss
if self.opts.adv_lambda > 0:
cur_d_loss_dict = self.validate_discriminator(y, y_hat)
loss, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent, y0_hat)
if self.opts.adv_lambda > 0:
cur_loss_dict = {**cur_d_loss_dict, **cur_loss_dict}
agg_loss_dict.append(cur_loss_dict)
# Logging related
with torch.no_grad(): ##### modified for SR task
y = F.adaptive_avg_pool2d(y, (x.shape[2], x.shape[3]))
y_hat = F.adaptive_avg_pool2d(y_hat, (x.shape[2], x.shape[3]))
x = torch.clamp(x, -1, 1) ##### modified
self.parse_and_log_images(id_logs, x, y, y_hat,
title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="test", step=self.global_step, opts=self.opts)
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt'
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write(f'**Best**: Step - {self.global_step}, Loss - {self.best_val_loss} \n{loss_dict}\n')
if self.opts.use_wandb:
self.wb_logger.log_best_model()
else:
f.write(f'Step - {self.global_step}, \n{loss_dict}\n')
def configure_optimizers(self):
if hasattr(self.opts, 'pretrain_model') and self.opts.pretrain_model == 'input_label_layer': ##### modified
params = list(self.net.encoder.input_label_layer.parameters())
else:
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception(f'{self.opts.dataset_type} is not a valid dataset_type')
print(f'Loading dataset for {self.opts.dataset_type}')
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
if self.opts.blind_sr:
import yaml
with open("./configs/dataset_config.yml", 'r') as stream:
parsed_yaml=yaml.safe_load(stream)
parsed_yaml['datasets']['train']['dataroot_gt'] = dataset_args['train_target_root']
factors = [int(f) for f in self.opts.resize_factors.split(",")]
if '320' in self.opts.dataset_type:
parsed_yaml['datasets']['train']['scale'] = 1
rescale = parsed_yaml['datasets']['train']['scale']
parsed_yaml['datasets']['train']['downsample_range'] = [min(factors) * 0.75 * rescale, max(factors)* 1.5 * rescale]
train_dataset = FFHQDegradationDataset(parsed_yaml['datasets']['train'])
else:
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
if self.opts.use_wandb:
self.wb_logger.log_dataset_wandb(train_dataset, dataset_name="Train")
self.wb_logger.log_dataset_wandb(test_dataset, dataset_name="Test")
print(f"Number of training samples: {len(train_dataset)}")
print(f"Number of test samples: {len(test_dataset)}")
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent, y0_hat=None):
loss_dict = {}
loss = 0.0
id_logs = None
if self.opts.id_lambda > 0:
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
loss_dict['loss_id'] = float(loss_id)
loss_dict['id_improve'] = float(sim_improvement)
loss = loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
if self.opts.lpips_lambda_crop > 0:
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop)
loss += loss_lpips_crop * self.opts.lpips_lambda_crop
if self.opts.l2_lambda_crop > 0:
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_l2_crop'] = float(loss_l2_crop)
loss += loss_l2_crop * self.opts.l2_lambda_crop
if self.opts.w_norm_lambda > 0:
loss_w_norm = self.w_norm_loss(latent, self.net.latent_avg)
loss_dict['loss_w_norm'] = float(loss_w_norm)
loss += loss_w_norm * self.opts.w_norm_lambda
if self.opts.moco_lambda > 0:
loss_moco, sim_improvement, id_logs = self.moco_loss(y_hat, y, x)
loss_dict['loss_moco'] = float(loss_moco)
loss_dict['id_improve'] = float(sim_improvement)
loss += loss_moco * self.opts.moco_lambda
if self.opts.adv_lambda > 0: ##### modified
loss_g = F.softplus(-self.discriminator(y_hat)).mean()
loss_dict['loss_g'] = float(loss_g)
loss += loss_g * self.opts.adv_lambda
if self.opts.tmp_lambda > 0 and y0_hat is not None: ##### modified
loss_tmp = ((y_hat-y0_hat)**2).mean()
loss_dict['loss_tmp'] = float(loss_tmp)
loss += loss_tmp * self.opts.tmp_lambda * min(1, 4.0*(self.global_step/self.opts.max_steps-0.5))
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step)
if self.opts.use_wandb:
self.wb_logger.log(prefix, metrics_dict, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print(f'Metrics for {prefix}, step {self.global_step}')
for key, value in metrics_dict.items():
print(f'\t{key} = ', value)
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.log_input_image(x[i], self.opts),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, f'{subscript}_{step:04d}.jpg')
else:
path = os.path.join(self.logger.log_dir, name, f'{step:04d}.jpg')
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
if self.opts.adv_lambda > 0: ##### modified
save_dict['discriminator'] = self.discriminator.state_dict()
if self.opts.editing_w_path is not None:
save_dict['editing_w'] = self.editing_w.cpu()
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.opts.start_from_latent_avg:
save_dict['latent_avg'] = self.net.latent_avg
return save_dict
##### modified
@staticmethod
def discriminator_loss(real_pred, fake_pred, loss_dict):
real_loss = F.softplus(-real_pred).mean()
fake_loss = F.softplus(fake_pred).mean()
loss_dict['loss_d_real'] = float(real_loss)
loss_dict['loss_d_fake'] = float(fake_loss)
return real_loss + fake_loss
@staticmethod
def discriminator_r1_loss(real_pred, real_w):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_w, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
@staticmethod
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def train_discriminator(self, real_img, fake_img):
loss_dict = {}
self.requires_grad(self.discriminator, True)
real_pred = self.discriminator(real_img)
fake_pred = self.discriminator(fake_img.detach())
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['loss_d'] = float(loss)
loss = loss * self.opts.adv_lambda
self.discriminator_optimizer.zero_grad()
loss.backward()
self.discriminator_optimizer.step()
# r1 regularization
d_regularize = self.global_step % self.opts.d_reg_every == 0
if d_regularize:
real_img = real_img.detach()
real_img.requires_grad = True
real_pred = self.discriminator(real_img)
r1_loss = self.discriminator_r1_loss(real_pred, real_img)
self.discriminator.zero_grad()
r1_final_loss = self.opts.r1 / 2 * r1_loss * self.opts.d_reg_every + 0 * real_pred[0]
r1_final_loss.backward()
self.discriminator_optimizer.step()
loss_dict['loss_r1'] = float(r1_final_loss)
# Reset to previous state
self.requires_grad(self.discriminator, False)
return loss_dict
def validate_discriminator(self, real_img, fake_img):
with torch.no_grad():
loss_dict = {}
real_pred = self.discriminator(real_img)
fake_pred = self.discriminator(fake_img.detach())
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['loss_d'] = float(loss)
loss = loss * self.opts.adv_lambda
return loss_dict |