--- dataset_info: tags: - video - text license: cc-by-4.0 language: - en pretty_name: Implicit-VidSRL --- # Implicit-VidSRL Dataset - **Paper:** https://arxiv.org/abs/2505.21068 - **Project:** https://anilbatra2185.github.io/p/ividsrl/ - **Curated by:** Anil Batra, Laura Sevilla-Lara, Marcus Rohrbach, Frank Keller - **Language(s) (NLP):** English - **License:** CC-BY-4.0

implicit video SRL dataset

## Dataset Summary Implicit-VidSRL is a benchmark for the understanding of procedural steps in instructional videos. The dataset uses semantic role labeling (SRL) to model the semantics of narrated instructional video as simple predicate-argument structures like {verb,what,where/with}. The dataset contains implicit and explicit arguments which can be infered from contextual information in multimodal cooking procedures. ## Dataset Details ### Dataset Sources - **Youcook2**: http://youcook2.eecs.umich.edu/ - **Tasty**: https://cvml.comp.nus.edu.sg/tasty/ ### Dataset Fields Each record in the dataset contains the following fields: - **video_id** (`str`): Video Id from the source dataset. - **dataset** (`str`): The name of the source dataset. - **title** (`int`): The title of the recipe. - **duration** (`str`): Duration of video in seconds. - **timestamps** (`List[List[float]]`): The list of timestamps corresponding to each recipe step in the video. Each timestamp entry contains start and end timestamp. - **sentences** (`List[str]`): The list of steps in the recipe. Each recipe step is natural text in English. - **srl** (`List[Dict]`): The new annotation for each recipe step. Each list item corresponds to the recipe step with key enteries of verb/what/where containing ingredient entities. In addition it also has information about the implicit entities for each step. ## Citation ```BibTeX @inproceedings{ batra2025implicit, title={Predicting Implicit Arguments in Procedural Video Instructions}, author={Anil Batra, Laura Sevilla-Lara, Marcus Rohrbach, Frank Keller}, booktitle={The 63rd Annual Meeting of the Association for Computational Linguistics}, year={2025} } ```