add slue-vp_nel config to slue-phase-2.py (#5)
Browse files- add slue-vp_nel config to slue-phase-2.py (5a0039a8d7ec6b09041e7ab16c1039f23cc007dc)
Co-authored-by: Ankita Pasd <[email protected]>
- slue-phase-2.py +112 -27
slue-phase-2.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
import csv
|
| 4 |
import ast
|
| 5 |
import gzip
|
|
|
|
| 6 |
|
| 7 |
import datasets
|
| 8 |
from datasets.utils.logging import get_logger
|
|
@@ -14,6 +15,7 @@ _URL = "https://asappresearch.github.io/slue-toolkit/"
|
|
| 14 |
_DL_URLS = {
|
| 15 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
| 16 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
_LICENSE = """
|
|
@@ -56,6 +58,11 @@ For questions from the other 4 datasets, their question texts, answer strings, a
|
|
| 56 |
|
| 57 |
SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
|
| 58 |
=======================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
"""
|
| 61 |
|
|
@@ -97,6 +104,26 @@ def load_word2time(word2time_file):
|
|
| 97 |
)
|
| 98 |
return word2time
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
class SLUE2Config(datasets.BuilderConfig):
|
| 101 |
"""BuilderConfig for SLUE."""
|
| 102 |
|
|
@@ -128,6 +155,10 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
| 128 |
name="sqa5",
|
| 129 |
description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
|
| 130 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
]
|
| 132 |
|
| 133 |
def _info(self):
|
|
@@ -175,6 +206,30 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
| 175 |
}
|
| 176 |
),
|
| 177 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
return datasets.DatasetInfo(
|
| 179 |
description=_DESCRIPTION,
|
| 180 |
features=datasets.Features(features),
|
|
@@ -194,33 +249,42 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
| 194 |
data_dir = os.path.join(dl_dir, config_name)
|
| 195 |
print(data_dir)
|
| 196 |
|
| 197 |
-
splits = [
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
data_dir
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
if self.config.name == "sqa5":
|
| 225 |
splits.append(
|
| 226 |
datasets.SplitGenerator(
|
|
@@ -288,4 +352,25 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
| 288 |
"word2time": load_word2time(word2time_file),
|
| 289 |
"answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
|
| 290 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
yield idx, example
|
|
|
|
| 3 |
import csv
|
| 4 |
import ast
|
| 5 |
import gzip
|
| 6 |
+
import json
|
| 7 |
|
| 8 |
import datasets
|
| 9 |
from datasets.utils.logging import get_logger
|
|
|
|
| 15 |
_DL_URLS = {
|
| 16 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
| 17 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
| 18 |
+
"slue-vp_nel": "data/slue-vp_nel_blind.zip",
|
| 19 |
}
|
| 20 |
|
| 21 |
_LICENSE = """
|
|
|
|
| 58 |
|
| 59 |
SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
|
| 60 |
=======================================================
|
| 61 |
+
SLUE-VP-NEL Dataset
|
| 62 |
+
|
| 63 |
+
SLUE-VP-NEL includes word-level time stamps for dev and test splits of the SLUE-voxpopuli corpus.
|
| 64 |
+
For the dev split, the dataset also contains named entity annotations and corresponding time-stamps in a tsv format.
|
| 65 |
+
=======================================================
|
| 66 |
|
| 67 |
"""
|
| 68 |
|
|
|
|
| 104 |
)
|
| 105 |
return word2time
|
| 106 |
|
| 107 |
+
def parse_nel_time_spans(nel_timestamps):
|
| 108 |
+
nel_timestamps = ast.literal_eval(nel_timestamps)
|
| 109 |
+
return [
|
| 110 |
+
{
|
| 111 |
+
"ne_label": ne,
|
| 112 |
+
"start_char_idx": start,
|
| 113 |
+
"char_offset": off,
|
| 114 |
+
"start_sec": t0,
|
| 115 |
+
"end_sec": t1,
|
| 116 |
+
}
|
| 117 |
+
for ne, start, off, t0, t1 in nel_timestamps
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
def read_word_timestamps(word_alignments_fn):
|
| 121 |
+
data = json.loads(open(word_alignments_fn).read())
|
| 122 |
+
return [
|
| 123 |
+
{"word": word, "start_sec": start, "end_sec": end}
|
| 124 |
+
for word, start, end in data["timestamps"]
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
class SLUE2Config(datasets.BuilderConfig):
|
| 128 |
"""BuilderConfig for SLUE."""
|
| 129 |
|
|
|
|
| 155 |
name="sqa5",
|
| 156 |
description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
|
| 157 |
),
|
| 158 |
+
SLUE2Config(
|
| 159 |
+
name="vp_nel",
|
| 160 |
+
description="SLUE-VP-NEL set with named entity labels and time-stamps.",
|
| 161 |
+
),
|
| 162 |
]
|
| 163 |
|
| 164 |
def _info(self):
|
|
|
|
| 206 |
}
|
| 207 |
),
|
| 208 |
}
|
| 209 |
+
elif self.config.name == "vp_nel":
|
| 210 |
+
features = {
|
| 211 |
+
"id": datasets.Value("string"),
|
| 212 |
+
"split": datasets.Value("string"),
|
| 213 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 214 |
+
"speaker_id": datasets.Value("string"),
|
| 215 |
+
"normalized_text": datasets.Value("string"),
|
| 216 |
+
"word_timestamps": datasets.Sequence(
|
| 217 |
+
{
|
| 218 |
+
"word": datasets.Value("string"),
|
| 219 |
+
"start_sec": datasets.Value("float64"),
|
| 220 |
+
"end_sec": datasets.Value("float64"),
|
| 221 |
+
}
|
| 222 |
+
),
|
| 223 |
+
"normalized_nel": datasets.Sequence(
|
| 224 |
+
{
|
| 225 |
+
"ne_label": datasets.Value("string"),
|
| 226 |
+
"start_char_idx": datasets.Value("int32"),
|
| 227 |
+
"char_offset": datasets.Value("int32"),
|
| 228 |
+
"start_sec": datasets.Value("float64"),
|
| 229 |
+
"end_sec": datasets.Value("float64"),
|
| 230 |
+
}
|
| 231 |
+
),
|
| 232 |
+
}
|
| 233 |
return datasets.DatasetInfo(
|
| 234 |
description=_DESCRIPTION,
|
| 235 |
features=datasets.Features(features),
|
|
|
|
| 249 |
data_dir = os.path.join(dl_dir, config_name)
|
| 250 |
print(data_dir)
|
| 251 |
|
| 252 |
+
splits = []
|
| 253 |
+
if self.config.name in ["hvb", "sqa5"]:
|
| 254 |
+
splits.append(
|
| 255 |
+
datasets.SplitGenerator(
|
| 256 |
+
name=datasets.Split.TRAIN,
|
| 257 |
+
gen_kwargs={
|
| 258 |
+
"filepath": os.path.join(
|
| 259 |
+
data_dir or "", f"{config_name}_fine-tune.tsv"
|
| 260 |
+
),
|
| 261 |
+
"data_dir": data_dir,
|
| 262 |
+
},
|
| 263 |
+
)
|
| 264 |
+
)
|
| 265 |
+
if self.config.name in ["hvb", "sqa5", "vp_nel"]:
|
| 266 |
+
splits.append(
|
| 267 |
+
datasets.SplitGenerator(
|
| 268 |
+
name=datasets.Split.VALIDATION,
|
| 269 |
+
gen_kwargs={
|
| 270 |
+
"filepath": os.path.join(
|
| 271 |
+
data_dir or "", f"{config_name}_dev.tsv"
|
| 272 |
+
),
|
| 273 |
+
"data_dir": data_dir,
|
| 274 |
+
},
|
| 275 |
+
),
|
| 276 |
+
)
|
| 277 |
+
splits.append(
|
| 278 |
+
datasets.SplitGenerator(
|
| 279 |
+
name=datasets.Split.TEST,
|
| 280 |
+
gen_kwargs={
|
| 281 |
+
"filepath": os.path.join(
|
| 282 |
+
data_dir or "", f"{config_name}_test_blind.tsv"
|
| 283 |
+
),
|
| 284 |
+
"data_dir": data_dir,
|
| 285 |
+
},
|
| 286 |
+
),
|
| 287 |
+
)
|
| 288 |
if self.config.name == "sqa5":
|
| 289 |
splits.append(
|
| 290 |
datasets.SplitGenerator(
|
|
|
|
| 352 |
"word2time": load_word2time(word2time_file),
|
| 353 |
"answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
|
| 354 |
}
|
| 355 |
+
elif self.config.name == "slue_nel":
|
| 356 |
+
split = "test" if "test" in filepath else "dev"
|
| 357 |
+
utt_id = row["id"]
|
| 358 |
+
word_alignments_fn = os.path.join(
|
| 359 |
+
data_dir, "word_timestamps", split, f"{utt_id}.json"
|
| 360 |
+
)
|
| 361 |
+
audio_file = os.path.join(
|
| 362 |
+
data_dir,
|
| 363 |
+
split,
|
| 364 |
+
f"{utt_id}.ogg",
|
| 365 |
+
)
|
| 366 |
+
example = {
|
| 367 |
+
"id": utt_id,
|
| 368 |
+
"audio": audio_file,
|
| 369 |
+
"speaker_id": row["speaker_id"],
|
| 370 |
+
"text": row["normalized_text"],
|
| 371 |
+
"ne_timestamps": parse_nel_time_spans(
|
| 372 |
+
row.get("normalized_nel", "[]")
|
| 373 |
+
),
|
| 374 |
+
"word_timestamps": read_word_timestamps(word_alignments_fn),
|
| 375 |
+
}
|
| 376 |
yield idx, example
|