File size: 16,217 Bytes
245057a 917d8dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
'''
Live version accessible at:
https://coins-of-bengal.streamlit.app
'''
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import os
import re
import warnings
from kaggle.api.kaggle_api_extended import KaggleApi
from PIL import Image
# Verbose Error Suppression
def configure_app():
st.set_page_config(page_title="Coins of Bengal", layout="wide")
st.set_option('client.showErrorDetails', False)
warnings.filterwarnings("ignore")
# Landing Page
def landing_page():
image_paths = [
"data/Muslim Conquerors/9.2 Giasuddin Bahadur Ghazi re .webp",
"data/Muslim Conquerors/29.5 Shamsuddin Firuz Shah re .webp",
"data/Muslim Conquerors/1.1 Ikhtiyar Khilji re .webp",
"data/Muslim Conquerors/2.1 Ali Mardan re .webp",
"data/Muslim Conquerors/22.6 Ruknuddin Barbak Shah .webp"
]
cols = st.columns(len(image_paths))
for i, path in enumerate(image_paths):
with cols[i]:
try:
# Optimize image loading with thumbnail and explicit format
img = Image.open(path)
img.thumbnail((500, 500)) # Resize for faster loading, adjust as needed
st.image(img, use_container_width=True)
except FileNotFoundError:
st.error(f"Image not found at: {path}")
except Exception as e:
st.error(f"Error loading image {path}: {e}")
st.markdown("<h2 style='text-align: center;'>Engineer Noorul Islam,<br>Proprietor of the actual museum and the private dataset</h2>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Dr. Md. Ataur Rahman,<br>Researcher and Archaeologist</h2>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Athoye Mahmud,<br>Developer and Data Science Undergrad, UIU</h2>", unsafe_allow_html=True)
st.markdown("""
<style>
.footer {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
background: linear-gradient(90deg, #D4AF37, #FFD700); /* Metallic Gold */
text-align: center; /* Default: Centered */
padding: 5px;
font-size: 14px;
font-weight: 600;
color: black;
box-shadow: 0 -1px 3px rgba(0, 0, 0, 0.2);
}
.footer small {
font-size: 14px;
padding: 0;
margin: 0;
display: inline-block;
}
/* Responsive Design */
@media screen and (max-width: 720px) { /* Applies when screen width <= 720px */
.footer {
text-align: left;
padding-left: 10px;
}
}
</style>
<div class="footer">
<small>©️ Published January 2025. All rights reserved.</small>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
# Load and preprocess data (from Kaggle)
@st.cache_data
def load_data():
try:
# Initialize the Kaggle API and authenticate
api = KaggleApi()
api.authenticate()
# Specify dataset and file path
dataset_path = 'athoye/coins-of-bengal'
file_name = 'coins.csv'
download_path = 'data' # Local directory to store the file
# Download the file
api.dataset_download_file(dataset_path, file_name, path=download_path, force=False, quiet=False)
# Load the data into a pandas DataFrame
csv_path = os.path.join(download_path, file_name)
df = pd.read_csv(csv_path)
# Standardize column names
df.rename(columns=lambda x: x.strip(), inplace=True)
df.rename(columns={
"Coin No.": "Coin No.",
"Ruler": "Ruler (or Issuer)",
"Weight": "Weight (g)",
"Dimensions": "Dimension (mm)",
}, inplace=True)
df["Weight (g)"] = pd.to_numeric(df["Weight (g)"], errors="coerce")
df["Dimension (mm)"] = pd.to_numeric(df["Dimension (mm)"], errors="coerce")
for col in ["Ruler (or Issuer)", "Reign", "Metal", "Mint", "Date of Issue"]:
df[col].fillna("Unknown", inplace=True)
for col in ["Weight (g)", "Dimension (mm)"]:
df[col].fillna(0, inplace=True)
# Function to convert Arabic calendar years to Gregorian
def convert_to_gregorian(year):
try:
year = int(year) # Ensure year is an integer
if year < 1202:
return year + 622 # Approximate conversion
return year
except ValueError:
return "Unknown" # Handle cases where conversion is not possible
# Apply the conversion to the "Date of Issue" column
df['Date of Issue'] = df['Date of Issue'].apply(convert_to_gregorian)
return df
except Exception as e:
st.error(f"Error loading data from Kaggle: {e}")
st.info("Make sure you have a valid kaggle.json file in the correct location (~/.kaggle/kaggle.json).")
return pd.DataFrame() # Return empty dataframe to prevent later errors
# Image matching (using Kaggle dataset)
@st.cache_data
def load_images():
try:
api = KaggleApi()
api.authenticate()
dataset_path = 'athoye/coins-of-bengal'
download_path = 'data'
api.dataset_download_files(dataset_path, path=download_path, unzip=True, force=False, quiet=False)
images_folder = os.path.join(download_path, "Muslim Conquerors")
return match_images(images_folder)
except Exception as e:
st.error(f"Error downloading or unzipping image dataset: {e}")
return {}
def match_images(images_folder):
images_dict = {}
if not os.path.exists(images_folder):
st.error(f"Error: Image folder not found at: {images_folder}")
return images_dict
pattern = re.compile(r"(\d+\.\d+)[_\s-]*.*\.webp$", re.IGNORECASE)
for filename in os.listdir(images_folder):
match = pattern.match(filename)
if match:
coin_no = match.group(1)
if coin_no not in images_dict:
images_dict[coin_no] = {"front": None, "back": None}
lower_name = filename.lower()
if " re " in lower_name or lower_name.endswith(" re.webp") or " re." in lower_name:
images_dict[coin_no]["back"] = os.path.join(images_folder, filename)
else:
images_dict[coin_no]["front"] = os.path.join(images_folder, filename)
return images_dict
def sidebar_filters(df):
st.sidebar.header("🔍 Filter Coins")
if df is not None and not df.empty:
# Ruler filter with a dropdown
selected_ruler = st.sidebar.selectbox("Select Ruler", ["All"] + sorted(df["Ruler (or Issuer)"].unique()))
# Metal filter with multiselect
selected_metals = st.sidebar.multiselect("Select Metal", options=["All"] + sorted(df["Metal"].unique()), default=["All"])
# Improved Reign filter with a range slider
reigns = sorted(df["Reign"].unique())
if reigns:
# Extract years from reign strings
years = [int(y.split('–')[0]) for y in reigns if '–' in y]
if years:
min_year = min(years)
max_year = max(years)
selected_years = st.sidebar.slider(
"Select Reign Years",
min_value=min_year,
max_value=max_year,
value=(min_year, max_year)
)
# Weight filter with a slider
weight_range = st.sidebar.slider(
"Select Weight Range (g)",
min_value=float(df["Weight (g)"].min()),
max_value=float(df["Weight (g)"].max()),
value=(0.0, float(df["Weight (g)"].max()))
)
# Apply filters
filtered_df = df.copy()
if selected_ruler != "All":
filtered_df = filtered_df[filtered_df["Ruler (or Issuer)"] == selected_ruler]
if "All" not in selected_metals:
filtered_df = filtered_df[filtered_df["Metal"].isin(selected_metals)]
# Apply reign filter
if reigns and years:
filtered_df = filtered_df[
filtered_df["Reign"].apply(
lambda x: selected_years[0] <= int(x.split('–')[0]) <= selected_years[1]
)
]
filtered_df = filtered_df[(filtered_df["Weight (g)"] >= weight_range[0]) & (filtered_df["Weight (g)"] <= weight_range[1])]
return filtered_df
return pd.DataFrame() # Return empty dataframe if input df is empty
# Display data
def display_data(df):
st.subheader("📜 Coin Database")
if df is not None and not df.empty: # Check for empty DataFrame
st.dataframe(df, use_container_width=True)
else:
st.warning("No data available to display.") # Display a warning
st.markdown("---")
# Visualizations
def display_visualizations(df):
st.subheader("📊 Coin Data Insights")
if df is not None and not df.empty:
# Filter out rows where "Weight (g)" is zero or NaN
df_filtered = df[df["Weight (g)"].notna() & (df["Weight (g)"] != 0)]
fig1 = px.histogram(df_filtered, x="Weight (g)", nbins=20, title="Distribution of Coin Weights", marginal="rug")
# Make titles and axis labels bolder
fig1.update_layout(
title_font=dict(size=24),
xaxis_title="Weight (g)",
yaxis_title="Count",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
st.plotly_chart(fig1, use_container_width=True)
fig2 = px.scatter(
df, x="Weight (g)", y="Dimension (mm)", color="Metal",
size="Weight (g)", hover_data=["Ruler (or Issuer)"], title="Coin Weight vs. Dimension"
)
# Make titles and axis labels bolder
fig2.update_layout(
title_font=dict(size=24),
xaxis_title="Weight (g)",
yaxis_title="Dimension (mm)",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
st.plotly_chart(fig2, use_container_width=True)
alt_chart = alt.Chart(df).mark_bar().encode(
x=alt.X("Metal:N", title="Metal Type"),
y=alt.Y("count()", title="Count"),
color="Metal"
).properties(title="Metal Type Distribution")
# Make titles and axis labels bolder
alt_chart = alt_chart.configure_title(
fontSize=24,
font="Arial",
color="black"
).configure_axis(
labelFontSize=18,
titleFontSize=18,
titleFont="Arial",
titleColor="black"
)
st.altair_chart(alt_chart, use_container_width=True)
# Count number of coins per ruler
ruler_counts = df["Ruler (or Issuer)"].value_counts().reset_index()
ruler_counts.columns = ["Ruler (or Issuer)", "Coin Count"]
# Plot using Plotly
fig3 = px.bar(
ruler_counts,
x="Coin Count",
y="Ruler (or Issuer)",
orientation="h",
title="🏛 Number of Coins Issued per Ruler",
labels={"Coin Count": "Number of Coins", "Ruler (or Issuer)": "Ruler"},
text_auto=True
)
# Improve appearance
fig3.update_layout(
title_font=dict(size=24),
xaxis_title="Number of Coins",
yaxis_title="Ruler",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
fig3.update_layout(yaxis=dict(categoryorder="total ascending"), xaxis=dict(showgrid=True))
# Show plot in Streamlit
st.plotly_chart(fig3) # Use Streamlit to display the plot
else:
st.warning("No data to create visualizations")
# Display coins with images
def display_coins_with_images(df, images_dict):
st.subheader("🖼️ Coin Details with Images")
if df is not None and not df.empty:
for idx, row in df.iterrows():
coin_no = str(row["Coin No."])
st.markdown(f"### Coin No. {coin_no}")
st.markdown(f"<h2 style='font-size:24px; font-weight:bold;'>Ruler: {row['Ruler (or Issuer)']}</h2>", unsafe_allow_html=True)
st.write(f"**Reign:** {row['Reign']}")
st.write(f"**Metal:** {row['Metal']}")
st.write(f"**Weight (g):** {row['Weight (g)']}")
st.write(f"**Dimension (mm):** {row['Dimension (mm)']}")
st.write(f"**Mint:** {row['Mint']}")
st.write(f"**Date of Issue:** {row['Date of Issue']}")
front_path = images_dict.get(coin_no, {}).get("front")
back_path = images_dict.get(coin_no, {}).get("back")
col1, col2 = st.columns(2)
# Image loading and display with error handling and optimization
with col1:
if front_path:
try:
img = Image.open(front_path)
img.thumbnail((500, 500)) # Resize for faster loading
st.image(img, caption=f"{coin_no} (Front)", use_container_width=True)
except Exception as e:
st.error(f"Error loading front image: {e}")
else:
st.warning("Front image not found.")
with col2:
if back_path:
try:
img = Image.open(back_path)
img.thumbnail((400, 400)) # Resize for faster loading
st.image(img, caption=f"{coin_no} (Back)", use_container_width=True)
except Exception as e:
st.error(f"Error loading back image: {e}")
else:
st.warning("Back image not found.")
st.markdown("---")
else:
st.warning("No coins to display.")
def test_kaggle_connection():
st.title("🔌 Kaggle Connection Test")
try:
# Initialize the Kaggle API
api = KaggleApi()
api.authenticate()
# Test connection by listing competitions
competitions = api.competitions_list()
st.success("✅ Successfully connected to Kaggle!")
# Display some data to verify
st.write("### Recent Kaggle Competitions:")
for comp in competitions[:5]: # Show first 5 competitions
st.write(f"- {comp.title}")
except Exception as e:
st.error(f"❌ Failed to connect to Kaggle: {str(e)}")
st.info("Make sure you have kaggle.json in ~/.kaggle/ directory")
# Main function
def main():
configure_app()
st.title("🪙 Coins of Bengal, A Digital Coin Museum", anchor="center")
# Navigation
pages = {
"Home": landing_page,
"Data": display_data,
"Visualizations": display_visualizations,
"Coin Catalog": display_coins_with_images,
"Kaggle Connection Test": test_kaggle_connection
}
st.sidebar.title("🧭 Navigation")
selection = st.sidebar.radio("⤵️ Go to", list(pages.keys()))
# Load data and images (using Kaggle)
coins_df = load_data()
images_dict = load_images()
filtered_df = sidebar_filters(coins_df)
# Display selected page, handling potential None/empty DataFrame
if selection == "Home":
pages[selection]() # Landing page doesn't need data
elif selection in ["Data", "Visualizations", "Coin Catalog"]:
if not filtered_df.empty: # Only pass data if it's not empty
pages[selection](filtered_df, images_dict)
else:
st.warning("No data available based on current filter selection.")
if selection == "Coin Catalog": #Need to account for empty dict too
st.warning("Ensure image directory has been downloaded.")
elif selection == "Kaggle Connection Test":
test_kaggle_connection()
if __name__ == "__main__":
main() |