Commit
·
21623b9
1
Parent(s):
b10b8ae
upload hubscripts/bioasq_task_c_2017_hub.py to hub from bigbio repo
Browse files- bioasq_task_c_2017.py +220 -0
bioasq_task_c_2017.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import xml.etree.ElementTree as ET
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
from .bigbiohub import text.features
|
25 |
+
from .bigbiohub import BigBioConfig
|
26 |
+
from .bigbiohub import Tasks
|
27 |
+
|
28 |
+
_LANGUAGES = ['English']
|
29 |
+
_PUBMED = True
|
30 |
+
_LOCAL = True
|
31 |
+
_CITATION = """\
|
32 |
+
@article{nentidis-etal-2017-results,
|
33 |
+
title = {Results of the fifth edition of the {B}io{ASQ} Challenge},
|
34 |
+
author = {
|
35 |
+
Nentidis, Anastasios and Bougiatiotis, Konstantinos and Krithara,
|
36 |
+
Anastasia and Paliouras, Georgios and Kakadiaris, Ioannis
|
37 |
+
},
|
38 |
+
year = 2007,
|
39 |
+
journal = {},
|
40 |
+
volume = {BioNLP 2017},
|
41 |
+
doi = {10.18653/v1/W17-2306},
|
42 |
+
url = {https://aclanthology.org/W17-2306},
|
43 |
+
biburl = {},
|
44 |
+
bibsource = {https://aclanthology.org/W17-2306}
|
45 |
+
}
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "bioasq_task_c_2017"
|
50 |
+
_DISPLAYNAME = "BioASQ Task C 2017"
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
The training data set for this task contains annotated biomedical articles
|
54 |
+
published in PubMed and corresponding full text from PMC. By annotated is meant
|
55 |
+
that GrantIDs and corresponding Grant Agencies have been identified in the full
|
56 |
+
text of articles
|
57 |
+
"""
|
58 |
+
|
59 |
+
_HOMEPAGE = "http://participants-area.bioasq.org/general_information/Task5c/"
|
60 |
+
|
61 |
+
_LICENSE = 'National Library of Medicine Terms and Conditions'
|
62 |
+
|
63 |
+
# Website contains all data, but login required
|
64 |
+
_URLS = {_DATASETNAME: "http://participants-area.bioasq.org/datasets/"}
|
65 |
+
|
66 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
67 |
+
|
68 |
+
_SOURCE_VERSION = "1.0.0"
|
69 |
+
_BIGBIO_VERSION = "1.0.0"
|
70 |
+
|
71 |
+
|
72 |
+
@dataclass
|
73 |
+
class BioASQTaskC2017BigBioConfig(BigBioConfig):
|
74 |
+
schema: str = "source"
|
75 |
+
name: str = "bioasq_task_c_2017_source"
|
76 |
+
version: datasets.Version = datasets.Version(_SOURCE_VERSION)
|
77 |
+
description: str = "bioasq_task_c_2017 source schema"
|
78 |
+
subset_id: str = "bioasq_task_c_2017"
|
79 |
+
|
80 |
+
|
81 |
+
class BioASQTaskC2017(datasets.GeneratorBasedBuilder):
|
82 |
+
"""
|
83 |
+
BioASQ Task C Dataset for 2017
|
84 |
+
"""
|
85 |
+
|
86 |
+
DEFAULT_CONFIG_NAME = "bioasq_task_c_2017_source"
|
87 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
88 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = [
|
91 |
+
BioASQTaskC2017BigBioConfig(
|
92 |
+
name="bioasq_task_c_2017_source",
|
93 |
+
version=SOURCE_VERSION,
|
94 |
+
description="bioasq_task_c_2017 source schema",
|
95 |
+
schema="source",
|
96 |
+
subset_id="bioasq_task_c_2017",
|
97 |
+
),
|
98 |
+
BioASQTaskC2017BigBioConfig(
|
99 |
+
name="bioasq_task_c_2017_bigbio_text",
|
100 |
+
version=BIGBIO_VERSION,
|
101 |
+
description="bioasq_task_c_2017 BigBio schema",
|
102 |
+
schema="bigbio_text",
|
103 |
+
subset_id="bioasq_task_c_2017",
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
BUILDER_CONFIG_CLASS = BioASQTaskC2017BigBioConfig
|
108 |
+
|
109 |
+
def _info(self) -> datasets.DatasetInfo:
|
110 |
+
|
111 |
+
# BioASQ Task C source schema
|
112 |
+
if self.config.schema == "source":
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"id": datasets.Value("string"),
|
116 |
+
"document_id": datasets.Value("string"),
|
117 |
+
"pmid": datasets.Value("string"),
|
118 |
+
"pmcid": datasets.Value("string"),
|
119 |
+
"grantList": [
|
120 |
+
{
|
121 |
+
"agency": datasets.Value("string"),
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"text": datasets.Value("string"),
|
125 |
+
}
|
126 |
+
)
|
127 |
+
|
128 |
+
# For example bigbio_kb, bigbio_t2t
|
129 |
+
elif self.config.schema == "bigbio_text":
|
130 |
+
features = text.features
|
131 |
+
|
132 |
+
return datasets.DatasetInfo(
|
133 |
+
description=_DESCRIPTION,
|
134 |
+
features=features,
|
135 |
+
homepage=_HOMEPAGE,
|
136 |
+
license=str(_LICENSE),
|
137 |
+
citation=_CITATION,
|
138 |
+
)
|
139 |
+
|
140 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
141 |
+
|
142 |
+
if self.config.data_dir is None:
|
143 |
+
raise ValueError(
|
144 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
data_dir = self.config.data_dir
|
148 |
+
|
149 |
+
return [
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TRAIN,
|
152 |
+
gen_kwargs={
|
153 |
+
"filepath": os.path.join(data_dir, "taskCTrainingData2017.json"),
|
154 |
+
"filespath": os.path.join(data_dir, "Train_Text"),
|
155 |
+
"split": "train",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.TEST,
|
160 |
+
gen_kwargs={
|
161 |
+
"filepath": os.path.join(data_dir, "taskc_golden2.json"),
|
162 |
+
"filespath": os.path.join(data_dir, "Final_Text"),
|
163 |
+
"split": "test",
|
164 |
+
},
|
165 |
+
),
|
166 |
+
]
|
167 |
+
|
168 |
+
def _generate_examples(self, filepath, filespath, split):
|
169 |
+
|
170 |
+
with open(filepath) as f:
|
171 |
+
task_data = json.load(f)
|
172 |
+
|
173 |
+
if self.config.schema == "source":
|
174 |
+
for article in task_data["articles"]:
|
175 |
+
|
176 |
+
with open(filespath + "/" + article["pmcid"] + ".xml") as f:
|
177 |
+
text = f.read()
|
178 |
+
pmid = article["pmid"]
|
179 |
+
|
180 |
+
yield pmid, {
|
181 |
+
"text": text, # articles[pmid],
|
182 |
+
"document_id": pmid,
|
183 |
+
"id": str(pmid),
|
184 |
+
"pmid": pmid,
|
185 |
+
"pmcid": article["pmcid"],
|
186 |
+
"grantList": [
|
187 |
+
{"agency": grant["agency"]} for grant in article["grantList"]
|
188 |
+
],
|
189 |
+
}
|
190 |
+
|
191 |
+
elif self.config.schema == "bigbio_text":
|
192 |
+
|
193 |
+
for article in task_data["articles"]:
|
194 |
+
|
195 |
+
with open(filespath + "/" + article["pmcid"] + ".xml") as f:
|
196 |
+
xml_string = f.read()
|
197 |
+
|
198 |
+
try:
|
199 |
+
article_body = ET.fromstring(xml_string).find("./article/body")
|
200 |
+
except ET.ParseError:
|
201 |
+
|
202 |
+
# PubMed XML might not contain namespace which results in parse error, add manually
|
203 |
+
xml_string = xml_string.replace(
|
204 |
+
"</pmc-articleset>",
|
205 |
+
# xlink namespace
|
206 |
+
'<article xmlns:xlink="http://www.w3.org/1999/xlink"' # mml namespace
|
207 |
+
' xmlns:mml="http://www.w3.org/1998/Math/MathML"'
|
208 |
+
' article-type="research-article">',
|
209 |
+
)
|
210 |
+
xml_string = xml_string + "</article></pmc-articleset>"
|
211 |
+
article_body = ET.fromstring(xml_string).find("./article/body")
|
212 |
+
|
213 |
+
text = ET.tostring(article_body, encoding="utf8", method="text")
|
214 |
+
|
215 |
+
yield article["pmid"], {
|
216 |
+
"text": text,
|
217 |
+
"id": str(article["pmid"]),
|
218 |
+
"document_id": article["pmid"],
|
219 |
+
"labels": [grant["agency"] for grant in article["grantList"]],
|
220 |
+
}
|