File size: 12,521 Bytes
b09840f addbb59 b09840f 20678c2 b09840f 20678c2 9a41762 b09840f 6e98a04 c23113c b09840f c23113c b09840f ccc6bb3 b09840f 236410f b09840f 330274d 6e98a04 a9a45ea 6e98a04 81a59ba 6e98a04 b09840f cb382f1 309a63f cb382f1 b09840f 4a7f004 b09840f 4a7f004 b09840f cb382f1 b09840f 4a7f004 b09840f b3a0f29 4a7f004 b09840f 46978bb b09840f 1c2a0e4 b09840f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
---
license: mit
pretty_name: HumanEvalPack
language_creators:
- expert-generated
multilinguality:
- multilingual
language:
- code
tags:
- code
dataset_info:
- config_name: cpp
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 469111
num_examples: 164
download_size: 193981
dataset_size: 469111
- config_name: go
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 463234
num_examples: 164
download_size: 198394
dataset_size: 463234
- config_name: java
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 589440
num_examples: 164
download_size: 210440
dataset_size: 589440
- config_name: js
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 435189
num_examples: 164
download_size: 194044
dataset_size: 435189
- config_name: python
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 423013
num_examples: 164
download_size: 191279
dataset_size: 423013
- config_name: rust
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 450539
num_examples: 164
download_size: 168464
dataset_size: 450539
configs:
- config_name: cpp
data_files:
- split: test
path: cpp/test-*
- config_name: go
data_files:
- split: test
path: go/test-*
- config_name: java
data_files:
- split: test
path: java/test-*
- config_name: js
data_files:
- split: test
path: js/test-*
- config_name: python
data_files:
- split: test
path: python/test-*
default: true
- config_name: rust
data_files:
- split: test
path: rust/test-*
---

# Dataset Card for HumanEvalPack
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/bigcode-project/octopack
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124)
- **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
### Dataset Summary
> HumanEvalPack is an extension of OpenAI's HumanEval to cover 6 total languages across 3 tasks. The Python split is exactly the same as OpenAI's Python HumanEval. The other splits are translated by humans (similar to HumanEval-X but with additional cleaning, see [here](https://github.com/bigcode-project/octopack/tree/main/evaluation/create/humaneval-x#modifications-muennighoff)). Refer to the [OctoPack paper](https://arxiv.org/abs/2308.07124) for more details.
>
- **Languages:** Python, JavaScript, Java, Go, C++, Rust
- **OctoPack🐙🎒:**
<table>
<tr>
<th>Data</t>
<td><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></td>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th></t>
<td><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></td>
<td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td>
</tr>
<tr>
<th>Model</t>
<td><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></td>
<td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th></t>
<td><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></td>
<td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th>Evaluation</t>
<td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td>
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
</tr>
</table>
## Usage
```python
# pip install -q datasets
from datasets import load_dataset
# Languages: "python", "js", "java", "go", "cpp", "rust"
ds = load_dataset("bigcode/humanevalpack", "python")["test"]
ds[0]
```
## Dataset Structure
### Data Instances
An example looks as follows:
```json
{
"task_id": "Python/0",
"prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n",
"declaration": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n",
"canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n",
"buggy_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False\n",
"bug_type": "missing logic",
"failure_symptoms": "incorrect output",
"entry_point": "has_close_elements",
"import": ""
"test_setup": ""
"test": "\n\n\n\n\ndef check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\ncheck(has_close_elements)",
"example_test": "def check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False\n assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True\ncheck(has_close_elements)\n",
"signature": "has_close_elements(numbers: List[float], threshold: float) -> bool",
"docstring": "Check if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue",
"instruction": "Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:\nCheck if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue"
}
```
### Data Fields
The data fields are the same among all splits:
- `task_id`: Indicates the language (Python/JavaScript/Java/Go/C++/Rust) and task id (from 0 to 163) of the problem
- `prompt`: the prompt for models relying on code continuation
- `declaration`: the declaration of the function (same as prompt but without the docstring)
- `canonical_solution`: the correct solution passing all unit tests for the problem
- `buggy_solution`: same as `canonical_solution` but with a subtle human-written bug causing the unit tests to fail
- `bug_type`: the type of the bug in `buggy_solution` (one of [`missing logic`, `excess logic`, `value misuse`, `operator misuse`, `variable misuse`, `function misuse`])
- `failure_symptoms`: the problem the bug causes (one of [`incorrect output`, `stackoverflow`, `infinite loop`])
- `entry_point`: the name of the function
- `import`: imports necessary for the solution (only present for Go)
- `test_setup`: imports necessary for the test execution (only present for Go)
- `test`: the unit tests for the problem
- `example_test`: additional unit tests different from `test` that could be e.g. provided to the model (these are not used in the paper)
- `signature`: the signature of the function
- `docstring`: the docstring describing the problem
- `instruction`: an instruction for HumanEvalSynthesize in the form `Write a {language_name} function {signature} to solve the following problem:\n{docstring}`
## Citation Information
```bibtex
@article{muennighoff2023octopack,
title={OctoPack: Instruction Tuning Code Large Language Models},
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
journal={arXiv preprint arXiv:2308.07124},
year={2023}
}
``` |