pmillana commited on
Commit
76426b4
·
verified ·
1 Parent(s): e20c15b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md CHANGED
@@ -1,3 +1,89 @@
1
  ---
2
  license: cc-by-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-3.0
3
+ language:
4
+ - en
5
+ size_categories:
6
+ - 100K<n<1M
7
+ pretty_name: CanInv-ML
8
+ tags:
9
+ - DNA_barcode
10
+ - Taxonomy
11
+ - Biodiversity
12
+ - LLMs
13
+ - BERT
14
+ - Clustering
15
+ - Zero_shot_transfer_learning
16
+ - Insect
17
+ - Species
18
+ maintainers:
19
+ - https://huggingface.co/pmillana
20
+ author:
21
+ name: Pablo Millan Arias
22
+ github: https://github.com/millanp95
23
+ hf: https://huggingface.co/pmillana
24
+ dataset_loader_script: dataset.py
25
+ dataset_split_names:
26
+ - pretrain
27
+ - train
28
+ - validation
29
+ - test
30
+ - test_unseen
31
+ task_categories:
32
+ - feature-extraction
33
  ---
34
+
35
+ # Dataset Card for CanadianInvertebrates-ML
36
+
37
+ Alternative names: InvertebratesCanada-ML, CanInv-ML, CanInv-1M, Canada-1.5M
38
+
39
+
40
+ ### Overview
41
+ The CanadianInvertebrates-ML is a machine learning-ready dataset derived from the raw DNA barcodes publiseh in [deWaard et. al, 2019](https://www.nature.com/articles/s41597-019-0320-2). The data is specifically designed and curated for different machine learning tasks in biodiversity analysis: species classification, genus identification of novel species, and BIN reconstruction.
42
+
43
+ ### Citation
44
+
45
+ If you make use of this dataset and/or its code repository, please cite the following paper:
46
+
47
+ ```
48
+ cite as:
49
+
50
+ @misc{arias2025barcodeberttransformersbiodiversityanalysis,
51
+ title={BarcodeBERT: Transformers for Biodiversity Analysis},
52
+ author={Pablo Millan~Arias and Niousha Sadjadi and Monireh Safari and ZeMing Gong and Austin T. Wang and Joakim Bruslund Haurum and Iuliia Zarubiieva and Dirk Steinke and Lila Kari and Angel X. Chang and Scott C. Lowe and Graham W. Taylor},
53
+ year={2025},
54
+ eprint={2311.02401},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.LG},
57
+ url={https://arxiv.org/abs/2311.02401},
58
+ }
59
+
60
+
61
+ ```
62
+
63
+ ## **Dataset content**
64
+
65
+ Each specimen contains the following annotations:
66
+
67
+ - **Indexing fields**
68
+ - `processid`: A unique number assigned by BOLD (International Barcode of Life Consortium).
69
+ - `sampleid`: A unique identifier given by the collector.
70
+ - **Taxonomic labels**
71
+ - `phylum`, `class`, `order`, `family`, `genus`, `species`: Hierarchical taxonomic classification
72
+ - **Genetic information**
73
+ - `dna_bin`: Barcode Index Number
74
+ - `dna_barcode`: DNA barcode sequence
75
+ - **Split and localization**
76
+ - `split`: Data partition label (e.g., pretrain, train, test, val, test_unseen)
77
+
78
+ ### Sample Usage
79
+
80
+ To-Do
81
+
82
+
83
+
84
+ ### Dataset Sources
85
+
86
+ - **GitHub:** https://github.com/bioscan-ml/BarcodeBERT
87
+ - **Zenodo:** To-Do
88
+ - **Kaggle:** ?
89
+ - **Paper:** https://arxiv.org/abs/2311.02401