blamm commited on
Commit
cbce0dd
·
verified ·
1 Parent(s): b7a3cc2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -3
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: cc-by-nc-nd-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-nd-4.0
3
+ task_categories:
4
+ - visual-question-answering
5
+ size_categories:
6
+ - 1K<n<10K
7
+ ---
8
+ # A Visual RAG Pipeline for Few-Shot Fine-Grained Product Classification
9
+
10
+ ## Paper
11
+
12
+ Accepted at *The 12th Workshop on Fine-Grained Visual Categorization* ([FGVC12](https://sites.google.com/view/fgvc12)) at *IEEE/CVF Conference on Computer Vision and Pattern Recognition* ([CVPR](https://cvpr.thecvf.com/)) 2025.
13
+
14
+ ## Overview
15
+
16
+ The **Retail Visual RAG Pipeline Dataset** is a subset of the *Retail-786k* ([Retail-786k](https://www.retail-786k.org/)) image dataset, supplemented with additional textual data per image.
17
+
18
+ ### Data
19
+
20
+ - **Image Data:**
21
+
22
+ - The images are cropped from scanned advertisement leaflets.
23
+ - The image data is divided into `train` and `test` splits.
24
+
25
+ - **Product and Promotion Data:**
26
+
27
+ Product Data:
28
+ - Product data contains the targets: brand, product category, GTINs, product weight, and different sorts.
29
+ - If a promotion covers a variety of different types/flavors of the product, the GTIN of each type is recorded.
30
+
31
+ Promotion Data:
32
+ - Promotion data contains the targets: price, regular price, and relative discount or absolute discount.
33
+
34
+ ## Usage
35
+
36
+ You can load and use the dataset with the Hugging Face `datasets` library.
37
+ ```python
38
+ import pandas as pd
39
+ from datasets import load_dataset
40
+
41
+ image_dataset = load_dataset("blamm/retail_visual_rag_pipeline", trust_remote_code=True)
42
+
43
+ product_promotion_data = load_dataset("blamm/retail_visual_rag_pipeline", data_files={'train':'train.parquet', 'test':'test.parquet'})
44
+ df_test = product_promotion_data['test'].to_pandas()
45
+
46
+ filename = '1166.jpg'
47
+ example_data = df_test.loc[df_test.filename == filename]
48
+ # Show product and promotion data
49
+ print(example_data)
50
+
51
+ image = image_dataset['test']['image'][example_data.index[0]]
52
+ # Show image
53
+ image.show()
54
+ ```
55
+
56
+ <img src="figures/example_dataset_sample.png" alt="data_sample" width="300"/>
57
+
58
+ The *Dataset for Visual RAG pipeline* is used to evaluate the introduced Visual RAG pipeline. See the paper for explaination and evaluation of the Visual RAG pipeline.
59
+
60
+ ## License
61
+ This dataset is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International](https://creativecommons.org/licenses/by-nc-nd/4.0/)