File size: 8,650 Bytes
b8de51a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# coding=utf-8
# Copyright 2024  Bofeng Huang

"""
Audio utils.

Adapted from https://github.com/facebookresearch/fairseq/blob/main/fairseq/data/audio/audio_utils.py
"""

import io
import mmap
import wave
from pathlib import Path
from typing import Any, BinaryIO, List, Optional, Tuple, Union

import numpy as np
import torch

try:
    import soundfile as sf
except ImportError:
    raise ImportError("Please install soundfile: pip install soundfile")

try:
    import torchaudio.sox_effects as ta_sox
except ImportError:
    raise ImportError("Please install torchaudio: pip install torchaudio")

SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"}
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"}


def convert_waveform(
    waveform: Union[np.ndarray, torch.Tensor],
    sample_rate: int,
    normalize_volume: bool = False,
    to_mono: bool = False,
    to_sample_rate: Optional[int] = None,
) -> Tuple[Union[np.ndarray, torch.Tensor], int]:
    """convert a waveform:
    - to a target sample rate
    - from multi-channel to mono channel
    - volume normalization

    Args:
        waveform (numpy.ndarray or torch.Tensor): 2D original waveform
            (channels x length)
        sample_rate (int): original sample rate
        normalize_volume (bool): perform volume normalization
        to_mono (bool): convert to mono channel if having multiple channels
        to_sample_rate (Optional[int]): target sample rate
    Returns:
        waveform (numpy.ndarray): converted 2D waveform (channels x length)
        sample_rate (float): target sample rate
    """

    effects = []
    if normalize_volume:
        effects.append(["gain", "-n"])
    if to_sample_rate is not None and to_sample_rate != sample_rate:
        effects.append(["rate", f"{to_sample_rate}"])
    if to_mono and waveform.shape[0] > 1:
        effects.append(["channels", "1"])
    if len(effects) > 0:
        is_np_input = isinstance(waveform, np.ndarray)
        _waveform = torch.from_numpy(waveform) if is_np_input else waveform
        converted, converted_sample_rate = ta_sox.apply_effects_tensor(
            _waveform, sample_rate, effects
        )
        if is_np_input:
            converted = converted.numpy()
        return converted, converted_sample_rate
    return waveform, sample_rate


def get_waveform(
    path_or_fp: Union[str, BinaryIO],
    normalization: bool = True,
    mono: bool = True,
    frames: int = -1,
    start: int = 0,
    always_2d: bool = True,
    output_sample_rate: Optional[int] = None,
    normalize_volume: bool = False,
    # waveform_transforms: Optional[CompositeAudioWaveformTransform] = None,
    waveform_transforms: Any = None,
) -> Tuple[np.ndarray, int]:
    """Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio.

    Args:
        path_or_fp (str or BinaryIO): the path or file-like object
        normalization (bool): normalize values to [-1, 1] (Default: True)
        mono (bool): convert multi-channel audio to mono-channel one
        frames (int): the number of frames to read. (-1 for reading all)
        start (int): Where to start reading. A negative value counts from the end.
        always_2d (bool): always return 2D array even for mono-channel audios
        output_sample_rate (Optional[int]): output sample rate
        normalize_volume (bool): normalize volume
    Returns:
        waveform (numpy.ndarray): 1D or 2D waveform (channels x length)
        sample_rate (float): sample rate
    """
    if isinstance(path_or_fp, str):
        ext = Path(path_or_fp).suffix
        if ext not in SF_AUDIO_FILE_EXTENSIONS:
            raise ValueError(f"Unsupported audio format: {ext}")

    waveform, sample_rate = sf.read(
        path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start
    )
    waveform = waveform.T  # T x C -> C x T

    # waveform, sample_rate = torchaudio.load(file_path, channels_first=True, frame_offset=start, num_frames=frames)

    waveform, sample_rate = convert_waveform(
        waveform,
        sample_rate,
        normalize_volume=normalize_volume,
        to_mono=mono,
        to_sample_rate=output_sample_rate,
    )

    if not normalization:
        waveform *= 2**15  # denormalized to 16-bit signed integers

    if waveform_transforms is not None:
        waveform, sample_rate = waveform_transforms(waveform, sample_rate)

    if not always_2d:
        waveform = waveform.squeeze(axis=0)

    return waveform, sample_rate


def get_waveform_from_stored_zip(
    path,
    byte_offset,
    byte_size,
    use_sample_rate=None,
    waveform_transforms=None,
):
    assert path.endswith(".zip")
    data = read_from_stored_zip(path, byte_offset, byte_size)
    f = io.BytesIO(data)
    # error on empty audio
    assert is_sf_audio_data(data), path
    return get_waveform(
        f,
        always_2d=False,
        output_sample_rate=use_sample_rate,
        waveform_transforms=waveform_transforms,
    )


def get_waveform_from_audio_or_stored_zip(path: str, use_sample_rate=None, waveform_transforms=None):
    """Get speech features from .npy file or waveform from .wav/.flac file.
    The file may be inside an uncompressed ZIP file and is accessed via byte
    offset and length.

    Args:
        path (str): File path in the format of "<.npy/.wav/.flac path>" or
        "<zip path>:<byte offset>:<byte length>".
        need_waveform (bool): return waveform instead of features.
        use_sample_rate (int): change sample rate for the input wave file

    Returns:
        features_or_waveform (numpy.ndarray): speech features or waveform.
    """
    _path, slice_ptr = parse_path(path)
    if len(slice_ptr) == 0:
        return get_waveform(
            _path,
            always_2d=False,
            output_sample_rate=use_sample_rate,
            waveform_transforms=waveform_transforms,
        )
    elif len(slice_ptr) == 2:
        return get_waveform_from_stored_zip(
            _path,
            slice_ptr[0],
            slice_ptr[1],
            use_sample_rate=use_sample_rate,
            waveform_transforms=waveform_transforms,
        )
    else:
        raise ValueError(f"Invalid path: {path}")


def get_waveform_bytes_from_audio_or_stored_zip(path: str) -> bytes:
    _path, slice_ptr = parse_path(path)
    if len(slice_ptr) == 0:
        return get_waveform_bytes(_path)
    elif len(slice_ptr) == 2:
        return get_waveform_bytes_from_stored_zip(
            _path,
            slice_ptr[0],
            slice_ptr[1],
        )
    else:
        raise ValueError(f"Invalid path: {path}")


def get_waveform_bytes(path: str) -> bytes:
    with wave.open(path, "rb") as f:
        return f.readframes(f.getnframes())


def get_waveform_bytes_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes:
    # shift head of 44 bytes
    return read_from_stored_zip(zip_path, offset, length)[44:]


def is_sf_audio_data(data: bytes) -> bool:
    is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70
    is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97
    is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103
    return is_wav or is_flac or is_ogg


def mmap_read(path: str, offset: int, length: int) -> bytes:
    with open(path, "rb") as f:
        # f.fileno() for file handle
        # length in bytes of the memory map
        # 0 is a special value indicating that the system should create a memory map large enough to hold the entire file
        # mmap mode should be compatible with open
        with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o:
            data = mmap_o[offset: offset + length]
    return data


def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes:
    return mmap_read(zip_path, offset, length)


def parse_path(path: str) -> Tuple[str, List[int]]:
    """Parse data path which is either a path to
    1. a .npy/.wav/.flac/.ogg file
    2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]"

      Args:
          path (str): the data path to parse

      Returns:
          file_path (str): the file path
          slice_ptr (list of int): empty in case 1;
            byte offset and length for the slice in case 2
    """

    if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS:
        _path, slice_ptr = path, []
    else:
        _path, *slice_ptr = path.split(":")
        if not Path(_path).is_file():
            raise FileNotFoundError(f"File not found: {_path}")
    assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}"
    slice_ptr = [int(i) for i in slice_ptr]
    return _path, slice_ptr