File size: 8,650 Bytes
b8de51a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# coding=utf-8
# Copyright 2024 Bofeng Huang
"""
Audio utils.
Adapted from https://github.com/facebookresearch/fairseq/blob/main/fairseq/data/audio/audio_utils.py
"""
import io
import mmap
import wave
from pathlib import Path
from typing import Any, BinaryIO, List, Optional, Tuple, Union
import numpy as np
import torch
try:
import soundfile as sf
except ImportError:
raise ImportError("Please install soundfile: pip install soundfile")
try:
import torchaudio.sox_effects as ta_sox
except ImportError:
raise ImportError("Please install torchaudio: pip install torchaudio")
SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"}
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"}
def convert_waveform(
waveform: Union[np.ndarray, torch.Tensor],
sample_rate: int,
normalize_volume: bool = False,
to_mono: bool = False,
to_sample_rate: Optional[int] = None,
) -> Tuple[Union[np.ndarray, torch.Tensor], int]:
"""convert a waveform:
- to a target sample rate
- from multi-channel to mono channel
- volume normalization
Args:
waveform (numpy.ndarray or torch.Tensor): 2D original waveform
(channels x length)
sample_rate (int): original sample rate
normalize_volume (bool): perform volume normalization
to_mono (bool): convert to mono channel if having multiple channels
to_sample_rate (Optional[int]): target sample rate
Returns:
waveform (numpy.ndarray): converted 2D waveform (channels x length)
sample_rate (float): target sample rate
"""
effects = []
if normalize_volume:
effects.append(["gain", "-n"])
if to_sample_rate is not None and to_sample_rate != sample_rate:
effects.append(["rate", f"{to_sample_rate}"])
if to_mono and waveform.shape[0] > 1:
effects.append(["channels", "1"])
if len(effects) > 0:
is_np_input = isinstance(waveform, np.ndarray)
_waveform = torch.from_numpy(waveform) if is_np_input else waveform
converted, converted_sample_rate = ta_sox.apply_effects_tensor(
_waveform, sample_rate, effects
)
if is_np_input:
converted = converted.numpy()
return converted, converted_sample_rate
return waveform, sample_rate
def get_waveform(
path_or_fp: Union[str, BinaryIO],
normalization: bool = True,
mono: bool = True,
frames: int = -1,
start: int = 0,
always_2d: bool = True,
output_sample_rate: Optional[int] = None,
normalize_volume: bool = False,
# waveform_transforms: Optional[CompositeAudioWaveformTransform] = None,
waveform_transforms: Any = None,
) -> Tuple[np.ndarray, int]:
"""Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio.
Args:
path_or_fp (str or BinaryIO): the path or file-like object
normalization (bool): normalize values to [-1, 1] (Default: True)
mono (bool): convert multi-channel audio to mono-channel one
frames (int): the number of frames to read. (-1 for reading all)
start (int): Where to start reading. A negative value counts from the end.
always_2d (bool): always return 2D array even for mono-channel audios
output_sample_rate (Optional[int]): output sample rate
normalize_volume (bool): normalize volume
Returns:
waveform (numpy.ndarray): 1D or 2D waveform (channels x length)
sample_rate (float): sample rate
"""
if isinstance(path_or_fp, str):
ext = Path(path_or_fp).suffix
if ext not in SF_AUDIO_FILE_EXTENSIONS:
raise ValueError(f"Unsupported audio format: {ext}")
waveform, sample_rate = sf.read(
path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start
)
waveform = waveform.T # T x C -> C x T
# waveform, sample_rate = torchaudio.load(file_path, channels_first=True, frame_offset=start, num_frames=frames)
waveform, sample_rate = convert_waveform(
waveform,
sample_rate,
normalize_volume=normalize_volume,
to_mono=mono,
to_sample_rate=output_sample_rate,
)
if not normalization:
waveform *= 2**15 # denormalized to 16-bit signed integers
if waveform_transforms is not None:
waveform, sample_rate = waveform_transforms(waveform, sample_rate)
if not always_2d:
waveform = waveform.squeeze(axis=0)
return waveform, sample_rate
def get_waveform_from_stored_zip(
path,
byte_offset,
byte_size,
use_sample_rate=None,
waveform_transforms=None,
):
assert path.endswith(".zip")
data = read_from_stored_zip(path, byte_offset, byte_size)
f = io.BytesIO(data)
# error on empty audio
assert is_sf_audio_data(data), path
return get_waveform(
f,
always_2d=False,
output_sample_rate=use_sample_rate,
waveform_transforms=waveform_transforms,
)
def get_waveform_from_audio_or_stored_zip(path: str, use_sample_rate=None, waveform_transforms=None):
"""Get speech features from .npy file or waveform from .wav/.flac file.
The file may be inside an uncompressed ZIP file and is accessed via byte
offset and length.
Args:
path (str): File path in the format of "<.npy/.wav/.flac path>" or
"<zip path>:<byte offset>:<byte length>".
need_waveform (bool): return waveform instead of features.
use_sample_rate (int): change sample rate for the input wave file
Returns:
features_or_waveform (numpy.ndarray): speech features or waveform.
"""
_path, slice_ptr = parse_path(path)
if len(slice_ptr) == 0:
return get_waveform(
_path,
always_2d=False,
output_sample_rate=use_sample_rate,
waveform_transforms=waveform_transforms,
)
elif len(slice_ptr) == 2:
return get_waveform_from_stored_zip(
_path,
slice_ptr[0],
slice_ptr[1],
use_sample_rate=use_sample_rate,
waveform_transforms=waveform_transforms,
)
else:
raise ValueError(f"Invalid path: {path}")
def get_waveform_bytes_from_audio_or_stored_zip(path: str) -> bytes:
_path, slice_ptr = parse_path(path)
if len(slice_ptr) == 0:
return get_waveform_bytes(_path)
elif len(slice_ptr) == 2:
return get_waveform_bytes_from_stored_zip(
_path,
slice_ptr[0],
slice_ptr[1],
)
else:
raise ValueError(f"Invalid path: {path}")
def get_waveform_bytes(path: str) -> bytes:
with wave.open(path, "rb") as f:
return f.readframes(f.getnframes())
def get_waveform_bytes_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes:
# shift head of 44 bytes
return read_from_stored_zip(zip_path, offset, length)[44:]
def is_sf_audio_data(data: bytes) -> bool:
is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70
is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97
is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103
return is_wav or is_flac or is_ogg
def mmap_read(path: str, offset: int, length: int) -> bytes:
with open(path, "rb") as f:
# f.fileno() for file handle
# length in bytes of the memory map
# 0 is a special value indicating that the system should create a memory map large enough to hold the entire file
# mmap mode should be compatible with open
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o:
data = mmap_o[offset: offset + length]
return data
def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes:
return mmap_read(zip_path, offset, length)
def parse_path(path: str) -> Tuple[str, List[int]]:
"""Parse data path which is either a path to
1. a .npy/.wav/.flac/.ogg file
2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]"
Args:
path (str): the data path to parse
Returns:
file_path (str): the file path
slice_ptr (list of int): empty in case 1;
byte offset and length for the slice in case 2
"""
if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS:
_path, slice_ptr = path, []
else:
_path, *slice_ptr = path.split(":")
if not Path(_path).is_file():
raise FileNotFoundError(f"File not found: {_path}")
assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}"
slice_ptr = [int(i) for i in slice_ptr]
return _path, slice_ptr
|