Add files using upload-large-folder tool
Browse files- README.md +234 -0
- __pycache__/meta.cpython-310.pyc +0 -0
- dur.txt +138 -0
- get_stats.py +84 -0
README.md
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-3.0
|
3 |
+
---
|
4 |
+
|
5 |
+
This collection includes over 189,000 hours of speech-to-text data in seven languages: English, French, Spanish, Portuguese, Italian, German, and Dutch
|
6 |
+
|
7 |
+
All segments were initially sorted by their IDs (timestamps). Adjacent segments from the same source were concatenated into 30-second chunks before being decoded using Whisper-Large-V3. The only exception was Common Voice, where segments were decoded individually before concatenation.
|
8 |
+
|
9 |
+
In total, over 288,000 hours of audio data were collected and processed. This dataset retains only segments with a word error rate (WER) below 20% after normalization. Users can apply stricter filters if needed for their specific use cases.
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
```python
|
14 |
+
from datasets import load_dataset
|
15 |
+
from pprint import pprint
|
16 |
+
|
17 |
+
dataset = load_dataset(
|
18 |
+
"bofenghuang/stt-pseudo-labeled-whisper-large-v3-multilingual",
|
19 |
+
"en-ami-ihm", # can also select other subsets
|
20 |
+
split="train",
|
21 |
+
trust_remote_code=True,
|
22 |
+
)
|
23 |
+
|
24 |
+
pprint(dataset[0])
|
25 |
+
# {'audio': {'array': array([-6.10351562e-05, -1.22070312e-04, -1.83105469e-04, ...,
|
26 |
+
# 6.40869141e-04, 6.40869141e-04, 6.40869141e-04]),
|
27 |
+
# 'path': None,
|
28 |
+
# 'sampling_rate': 16000},
|
29 |
+
# 'audio_filepath': '/home/bhuang/.cache/huggingface/hub/datasets--bofenghuang--stt-pseudo-labeled-whisper-large-v3-multilingual/snapshots/8f1b7bbae8f1b657d1a95b66dba9d2e7b3b86665//distil-whisper/ami-ihm/ihm/train_concatenated/EN2001a.zip:62624564:958444',
|
30 |
+
# 'duration': 29.950000762939453,
|
31 |
+
# 'prev_text': "OKAY DOES ANYONE WANT TO SEE UH STEVE'S FEEDBACK FROM THE "
|
32 |
+
# "SPECIFICATION RIGHT NOT REALLY UM JUST WHAT HE'S TALKING ABOUT "
|
33 |
+
# 'LIKE DUPLICATION OF EFFORT AND LIKE DUPLICATION OF EFFORT AND '
|
34 |
+
# 'STUFF AND UM YEAH HE WAS SAYING THAT WE SHOULD MAYBE UH THINK '
|
35 |
+
# 'ABOUT HAVING A PROTOTYPE FOR WEEK SIX WHICH IS NEXT WEEK YEAH '
|
36 |
+
# 'SO WE SHOULD PROBABLY PRIORITIZE OUR PACKAGES MM YEAH YEAH HMM',
|
37 |
+
# 'prev_whisper_transcript': "<|0.00|> Does anyone want to see Steve's feedback "
|
38 |
+
# 'from the specification?<|4.80|><|4.80|> Not '
|
39 |
+
# 'really, just what he was talking about, like '
|
40 |
+
# 'duplication of effort and '
|
41 |
+
# 'stuff.<|11.20|><|11.20|> And saying that we '
|
42 |
+
# 'should maybe think about having a prototype for '
|
43 |
+
# 'week six, which is next week.<|21.00|><|21.00|> '
|
44 |
+
# 'So we should probably prioritise our '
|
45 |
+
# 'packages.<|28.34|>',
|
46 |
+
# 'text': 'HAS HAS ANYONE ACTUALLY LOOKED AT THE JAVA CODE FOR THE HUH HMM YEAH '
|
47 |
+
# "I THINK SO YEAH I I DON'T KNOW ABOUT THE SEARCH FUNCTIONALITY THAT "
|
48 |
+
# "MIGHT BE ONLINE DEPENDS HOW IT'S GONNA WORK YEAH MM-HMM YEAH THAT "
|
49 |
+
# 'MAKES SENSE HMM HMM YEAH YOU JUST CONCATENATE THEM TOGETHER HMM YEAH '
|
50 |
+
# 'IT JUST MEANS IT LOADS ON DEMAND IT ONLY LOADS WHEN IT NEEDS A '
|
51 |
+
# "PARTICULAR TYPE OF FILE LIKE WHEN IT'S BEING ACCESSED YEAH I THINK "
|
52 |
+
# "THAT'S THE IDEA IT JUST LOADS THE PARTICULAR ONES IT NEEDS BUT IF "
|
53 |
+
# "YOU WERE DOING A SEARCH OVER THE WHOLE CORPUS YOU'D HAVE TO LOAD "
|
54 |
+
# 'THEM ALL HMM',
|
55 |
+
# 'text_norm': 'has has anyone actually looked at the java code for the huh '
|
56 |
+
# 'yeah i think so yeah i i do not know about the search '
|
57 |
+
# 'functionality that might be online depends how it is going to '
|
58 |
+
# 'work yeah yeah that makes sense yeah you just concatenate them '
|
59 |
+
# 'together yeah it just means it loads on demand it only loads '
|
60 |
+
# 'when it needs a particular type of file like when it is being '
|
61 |
+
# 'accessed yeah i think that is the idea it just loads the '
|
62 |
+
# 'particular ones it needs but if you were doing a search over '
|
63 |
+
# 'the whole corpus you would have to load them all',
|
64 |
+
# 'wer': 4.716980934143066,
|
65 |
+
# 'whisper_transcript': '<|0.00|> Has anyone actually looked at the Java code '
|
66 |
+
# 'for the AMX?<|5.00|><|5.38|> Yeah, I think '
|
67 |
+
# "so.<|6.22|><|6.22|> Yeah, I don't know about the "
|
68 |
+
# 'search functionality.<|8.28|><|8.28|> That might be '
|
69 |
+
# "online.<|10.20|><|10.20|> Depends how it's gonna "
|
70 |
+
# 'work.<|11.92|><|11.92|> Yeah, that makes '
|
71 |
+
# 'sense.<|13.22|><|13.22|> Yeah, you just concatenate '
|
72 |
+
# 'them together.<|15.60|><|15.60|> It just means it '
|
73 |
+
# 'loads on demand.<|17.42|><|17.42|> It only loads when '
|
74 |
+
# 'it needs a particular type of file,<|22.24|><|22.24|> '
|
75 |
+
# "like when it's being accessed.<|23.40|><|23.40|> Yeah, "
|
76 |
+
# "I think that's the idea.<|24.40|><|24.40|> It just "
|
77 |
+
# 'loads the particular ones it needs.<|26.96|><|26.96|> '
|
78 |
+
# 'But if you were doing a search over the whole '
|
79 |
+
# "corpus,<|28.66|><|28.66|> you'd have to load them "
|
80 |
+
# 'all.<|29.96|>',
|
81 |
+
# 'whisper_transcript_norm': 'has anyone actually looked at the java code for '
|
82 |
+
# 'the amx yeah i think so yeah i do not know about '
|
83 |
+
# 'the search functionality that might be online '
|
84 |
+
# 'depends how it is going to work yeah that makes '
|
85 |
+
# 'sense yeah you just concatenate them together it '
|
86 |
+
# 'just means it loads on demand it only loads when '
|
87 |
+
# 'it needs a particular type of file like when it '
|
88 |
+
# 'is being accessed yeah i think that is the idea '
|
89 |
+
# 'it just loads the particular ones it needs but if '
|
90 |
+
# 'you were doing a search over the whole corpus you '
|
91 |
+
# 'would have to load them all'}
|
92 |
+
```
|
93 |
+
|
94 |
+
## Statistics
|
95 |
+
|
96 |
+
See below for the durations (in hours) after applying different WER filters to each subset.
|
97 |
+
|
98 |
+
English
|
99 |
+
|
100 |
+
| Split | 20% | 10% | 5% | 0% |
|
101 |
+
| :--- | :---: | :---: | :---: | :---: |
|
102 |
+
| en-mcv | 1,571.18 | 1,527.70 | 1,181.29 | 428.52 |
|
103 |
+
| en-ls | 951.31 | 932.31 | 852.46 | 450.89 |
|
104 |
+
| en-voxpopuli | 494.10 | 413.92 | 260.32 | 74.07 |
|
105 |
+
| en-tedlium | 448.05 | 416.95 | 312.36 | 78.16 |
|
106 |
+
| en-peoples_speech-clean | 5,652.32 | 3,474.44 | 1,160.46 | 73.02 |
|
107 |
+
| en-peoples_speech-clean_sa | 955.14 | 643.65 | 260.26 | 24.91 |
|
108 |
+
| en-peoples_speech-dirty | 8,664.09 | 1,414.41 | 181.96 | 5.35 |
|
109 |
+
| en-peoples_speech-dirty_sa | 972.02 | 206.29 | 35.34 | 1.65 |
|
110 |
+
| en-gigaspeech-l | 2,464.07 | 2,384.80 | 2,099.40 | 901.77 |
|
111 |
+
| en-ami-ihm | 50.84 | 19.54 | 5.44 | 0.46 |
|
112 |
+
| en-ami-sdm | 23.17 | 6.81 | 1.84 | 0.18 |
|
113 |
+
| en-yodas-000 | 3,699.62 | 2,902.96 | 1,891.37 | 487.83 |
|
114 |
+
| en-yodas-001 | 3,693.85 | 2,896.02 | 1,887.55 | 484.64 |
|
115 |
+
| en-yodas-002 | 3,687.30 | 2,890.38 | 1,895.27 | 487.38 |
|
116 |
+
| en-yodas-003 | 3,650.57 | 2,843.52 | 1,841.51 | 464.97 |
|
117 |
+
| en-yodas-004 | 3,710.20 | 2,907.12 | 1,890.28 | 477.85 |
|
118 |
+
| en-yodas-005 | 2,936.86 | 2,302.64 | 1,496.23 | 382.48 |
|
119 |
+
| en-yodas-100 | 3,831.71 | 2,692.86 | 1,496.27 | 286.69 |
|
120 |
+
| en-yodas-101 | 3,816.33 | 2,689.93 | 1,497.48 | 292.58 |
|
121 |
+
| en-yodas-102 | 3,826.86 | 2,701.17 | 1,501.30 | 286.49 |
|
122 |
+
| en-yodas-103 | 3,825.10 | 2,698.54 | 1,498.18 | 294.47 |
|
123 |
+
| en-yodas-104 | 2,449.36 | 1,717.38 | 948.36 | 184.66 |
|
124 |
+
| en-yodas-105 | 3,790.39 | 2,664.18 | 1,476.47 | 285.18 |
|
125 |
+
| en-yodas-106 | 3,800.00 | 2,678.34 | 1,487.09 | 287.32 |
|
126 |
+
| en-yodas-107 | 3,809.05 | 2,679.41 | 1,488.62 | 289.25 |
|
127 |
+
| en-yodas-109 | 3,791.46 | 2,677.90 | 1,492.26 | 290.38 |
|
128 |
+
| en-yodas-110 | 3,767.50 | 2,638.29 | 1,456.01 | 281.24 |
|
129 |
+
| en-yodas-111 | 3,801.11 | 2,671.89 | 1,486.27 | 287.74 |
|
130 |
+
| en-yodas-112 | 3,827.94 | 2,696.10 | 1,494.42 | 285.60 |
|
131 |
+
| en-yodas-113 | 3,817.43 | 2,681.09 | 1,489.73 | 289.74 |
|
132 |
+
| en-yodas-114 | 3,798.91 | 2,682.03 | 1,500.48 | 296.98 |
|
133 |
+
| en-yodas-115 | 3,811.49 | 2,682.46 | 1,487.23 | 288.86 |
|
134 |
+
| en-yodas-116 | 3,826.62 | 2,706.08 | 1,509.38 | 292.36 |
|
135 |
+
| en-yodas-117 | 3,808.30 | 2,684.16 | 1,497.32 | 293.84 |
|
136 |
+
| en-yodas-118 | 3,804.02 | 2,687.24 | 1,499.53 | 292.64 |
|
137 |
+
| en-yodas-119 | 3,809.40 | 2,697.34 | 1,508.54 | 296.01 |
|
138 |
+
| en-yodas-120 | 3,827.33 | 2,701.14 | 1,502.67 | 287.27 |
|
139 |
+
| en-yodas-121 | 3,800.26 | 2,677.95 | 1,488.84 | 290.16 |
|
140 |
+
| en-yodas-122 | 3,790.63 | 2,660.88 | 1,472.27 | 285.75 |
|
141 |
+
| en-yodas-123 | 3,785.27 | 2,677.23 | 1,494.34 | 289.47 |
|
142 |
+
| en-yodas-124 | 3,809.97 | 2,685.33 | 1,501.46 | 293.05 |
|
143 |
+
| en-yodas-125 | 3,783.51 | 2,659.93 | 1,475.39 | 288.66 |
|
144 |
+
| en-yodas-126 | 3,797.07 | 2,668.46 | 1,487.35 | 289.60 |
|
145 |
+
| en-yodas-127 | 1,769.64 | 1,247.31 | 699.89 | 137.38 |
|
146 |
+
| total | 143,001.36 | 98,188.11 | 56,190.49 | 12,387.48 |
|
147 |
+
|
148 |
+
French
|
149 |
+
|
150 |
+
| Split | 20% | 10% | 5% | 0% |
|
151 |
+
| :--- | :---: | :---: | :---: | :---: |
|
152 |
+
| fr-mcv | 689.80 | 663.32 | 439.61 | 93.34 |
|
153 |
+
| fr-mls | 1,042.59 | 936.38 | 703.29 | 260.22 |
|
154 |
+
| fr-voxpopuli | 191.70 | 146.51 | 84.15 | 21.91 |
|
155 |
+
| fr-mtedx | 146.09 | 100.67 | 57.22 | 12.98 |
|
156 |
+
| fr-yodas-000 | 1,497.83 | 912.55 | 445.32 | 71.56 |
|
157 |
+
| fr-yodas-100 | 1,860.75 | 606.79 | 149.23 | 13.01 |
|
158 |
+
| fr-yodas-101 | 1,857.40 | 612.54 | 151.96 | 14.09 |
|
159 |
+
| fr-yodas-102 | 1,850.93 | 610.35 | 152.34 | 13.33 |
|
160 |
+
| fr-yodas-103 | 1,172.29 | 390.89 | 98.22 | 9.21 |
|
161 |
+
| total | 10,309.39 | 4,979.99 | 2,281.33 | 509.65 |
|
162 |
+
|
163 |
+
Spanish
|
164 |
+
|
165 |
+
| Split | 20% | 10% | 5% | 0% |
|
166 |
+
| :--- | :---: | :---: | :---: | :---: |
|
167 |
+
| es-mcv | 446.01 | 435.19 | 350.02 | 145.81 |
|
168 |
+
| es-mls | 844.79 | 722.04 | 535.54 | 210.70 |
|
169 |
+
| es-voxpopuli | 139.52 | 112.18 | 70.99 | 20.37 |
|
170 |
+
| es-mtedx | 150.89 | 114.39 | 68.60 | 16.38 |
|
171 |
+
| es-yodas-000 | 2,408.25 | 1,592.19 | 851.84 | 180.98 |
|
172 |
+
| es-yodas-100 | 2,982.87 | 1,610.76 | 667.60 | 104.08 |
|
173 |
+
| es-yodas-101 | 2,987.42 | 1,584.88 | 647.20 | 100.99 |
|
174 |
+
| total | 9,959.76 | 6,171.63 | 3,191.77 | 779.30 |
|
175 |
+
|
176 |
+
Portuguese
|
177 |
+
|
178 |
+
| Split | 20% | 10% | 5% | 0% |
|
179 |
+
| :--- | :---: | :---: | :---: | :---: |
|
180 |
+
| pt-mcv | 21.75 | 21.42 | 19.13 | 10.46 |
|
181 |
+
| pt-mls | 147.01 | 113.41 | 69.66 | 20.76 |
|
182 |
+
| pt-mtedx | 131.71 | 94.51 | 49.57 | 9.32 |
|
183 |
+
| pt-yodas-000 | 859.83 | 453.14 | 211.42 | 42.00 |
|
184 |
+
| pt-yodas-100 | 1,853.79 | 549.13 | 140.03 | 22.36 |
|
185 |
+
| pt-yodas-101 | 1,849.31 | 552.92 | 141.34 | 21.55 |
|
186 |
+
| pt-yodas-102 | 1,871.89 | 560.40 | 143.63 | 22.47 |
|
187 |
+
| pt-yodas-103 | 1,288.90 | 383.86 | 98.71 | 15.83 |
|
188 |
+
| total | 8,024.19 | 2,728.80 | 873.48 | 164.75 |
|
189 |
+
|
190 |
+
Italian
|
191 |
+
|
192 |
+
| Split | 20% | 10% | 5% | 0% |
|
193 |
+
| :--- | :---: | :---: | :---: | :---: |
|
194 |
+
| it-mcv | 232.83 | 229.54 | 187.96 | 70.52 |
|
195 |
+
| it-mls | 232.95 | 185.26 | 113.87 | 35.30 |
|
196 |
+
| it-voxpopuli | 58.23 | 41.64 | 23.06 | 6.31 |
|
197 |
+
| it-mtedx | 88.72 | 73.84 | 49.47 | 13.02 |
|
198 |
+
| it-yodas-000 | 952.76 | 600.62 | 317.58 | 85.28 |
|
199 |
+
| it-yodas-100 | 2,664.50 | 1,242.66 | 453.31 | 70.46 |
|
200 |
+
| it-yodas-101 | 2,277.28 | 1,062.83 | 387.99 | 60.38 |
|
201 |
+
| total | 6,507.27 | 3,436.38 | 1,533.24 | 341.27 |
|
202 |
+
|
203 |
+
German
|
204 |
+
|
205 |
+
| Split | 20% | 10% | 5% | 0% |
|
206 |
+
| :--- | :---: | :---: | :---: | :---: |
|
207 |
+
| de-mcv | 875.27 | 862.86 | 720.29 | 324.03 |
|
208 |
+
| de-mls | 1,919.13 | 1,736.71 | 1,315.35 | 661.96 |
|
209 |
+
| de-voxpopuli | 232.27 | 146.60 | 70.01 | 17.32 |
|
210 |
+
| de-mtedx | 8.39 | 5.70 | 3.28 | 0.81 |
|
211 |
+
| de-yodas-000 | 1,607.82 | 925.94 | 476.64 | 128.54 |
|
212 |
+
| de-yodas-100 | 2,304.63 | 856.85 | 260.56 | 41.08 |
|
213 |
+
| de-yodas-101 | 2,343.04 | 875.50 | 265.74 | 40.33 |
|
214 |
+
| de-yodas-102 | 426.58 | 156.51 | 47.43 | 7.58 |
|
215 |
+
| total | 9,717.13 | 5,566.67 | 3,159.30 | 1,221.65 |
|
216 |
+
|
217 |
+
Dutch
|
218 |
+
|
219 |
+
| Split | 20% | 10% | 5% | 0% |
|
220 |
+
| :--- | :---: | :---: | :---: | :---: |
|
221 |
+
| nl-mcv | 41.02 | 40.81 | 35.81 | 12.01 |
|
222 |
+
| nl-mls | 1,455.24 | 1,133.02 | 692.95 | 253.02 |
|
223 |
+
| nl-voxpopuli | 38.86 | 23.20 | 9.50 | 1.79 |
|
224 |
+
| nl-yodas-000 | 215.26 | 108.59 | 44.07 | 6.59 |
|
225 |
+
| nl-yodas-100 | 512.37 | 127.16 | 31.75 | 5.48 |
|
226 |
+
| total | 2,262.75 | 1,432.78 | 814.08 | 278.89 |
|
227 |
+
|
228 |
+
Code-switching
|
229 |
+
|
230 |
+
| Split | 20% | 10% | 5% | 0% |
|
231 |
+
| :--- | :---: | :---: | :---: | :---: |
|
232 |
+
| cs-mcv | 3,346.80 | 3,333.61 | 3,192.75 | 1,428.04 |
|
233 |
+
| cs-yodas | 6,465.59 | 6,434.34 | 4,967.96 | 572.10 |
|
234 |
+
| total | 9,812.39 | 9,767.94 | 8,160.72 | 2,000.14 |
|
__pycache__/meta.cpython-310.pyc
ADDED
Binary file (279 kB). View file
|
|
dur.txt
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
it
|
3 |
+
|
4 |
+
| Split | 20% | 10% | 5% | 0% |
|
5 |
+
| :--- | :---: | :---: | :---: | :---: |
|
6 |
+
| it-mcv | 232.83 | 229.54 | 187.96 | 70.52 |
|
7 |
+
| it-mls | 232.95 | 185.26 | 113.87 | 35.30 |
|
8 |
+
| it-voxpopuli | 58.23 | 41.64 | 23.06 | 6.31 |
|
9 |
+
| it-mtedx | 88.72 | 73.84 | 49.47 | 13.02 |
|
10 |
+
| it-yodas-000 | 952.76 | 600.62 | 317.58 | 85.28 |
|
11 |
+
| it-yodas-100 | 2,664.50 | 1,242.66 | 453.31 | 70.46 |
|
12 |
+
| it-yodas-101 | 2,277.28 | 1,062.83 | 387.99 | 60.38 |
|
13 |
+
| total | 6,507.27 | 3,436.38 | 1,533.24 | 341.27 |
|
14 |
+
|
15 |
+
fr
|
16 |
+
|
17 |
+
| Split | 20% | 10% | 5% | 0% |
|
18 |
+
| :--- | :---: | :---: | :---: | :---: |
|
19 |
+
| fr-mcv | 689.80 | 663.32 | 439.61 | 93.34 |
|
20 |
+
| fr-mls | 1,042.59 | 936.38 | 703.29 | 260.22 |
|
21 |
+
| fr-voxpopuli | 191.70 | 146.51 | 84.15 | 21.91 |
|
22 |
+
| fr-mtedx | 146.09 | 100.67 | 57.22 | 12.98 |
|
23 |
+
| fr-yodas-000 | 1,497.83 | 912.55 | 445.32 | 71.56 |
|
24 |
+
| fr-yodas-100 | 1,860.75 | 606.79 | 149.23 | 13.01 |
|
25 |
+
| fr-yodas-101 | 1,857.40 | 612.54 | 151.96 | 14.09 |
|
26 |
+
| fr-yodas-102 | 1,850.93 | 610.35 | 152.34 | 13.33 |
|
27 |
+
| fr-yodas-103 | 1,172.29 | 390.89 | 98.22 | 9.21 |
|
28 |
+
| total | 10,309.39 | 4,979.99 | 2,281.33 | 509.65 |
|
29 |
+
|
30 |
+
es
|
31 |
+
|
32 |
+
| Split | 20% | 10% | 5% | 0% |
|
33 |
+
| :--- | :---: | :---: | :---: | :---: |
|
34 |
+
| es-mcv | 446.01 | 435.19 | 350.02 | 145.81 |
|
35 |
+
| es-mls | 844.79 | 722.04 | 535.54 | 210.70 |
|
36 |
+
| es-voxpopuli | 139.52 | 112.18 | 70.99 | 20.37 |
|
37 |
+
| es-mtedx | 150.89 | 114.39 | 68.60 | 16.38 |
|
38 |
+
| es-yodas-000 | 2,408.25 | 1,592.19 | 851.84 | 180.98 |
|
39 |
+
| es-yodas-100 | 2,982.87 | 1,610.76 | 667.60 | 104.08 |
|
40 |
+
| es-yodas-101 | 2,987.42 | 1,584.88 | 647.20 | 100.99 |
|
41 |
+
| total | 9,959.76 | 6,171.63 | 3,191.77 | 779.30 |
|
42 |
+
|
43 |
+
pt
|
44 |
+
|
45 |
+
| Split | 20% | 10% | 5% | 0% |
|
46 |
+
| :--- | :---: | :---: | :---: | :---: |
|
47 |
+
| pt-mcv | 21.75 | 21.42 | 19.13 | 10.46 |
|
48 |
+
| pt-mls | 147.01 | 113.41 | 69.66 | 20.76 |
|
49 |
+
| pt-mtedx | 131.71 | 94.51 | 49.57 | 9.32 |
|
50 |
+
| pt-yodas-000 | 859.83 | 453.14 | 211.42 | 42.00 |
|
51 |
+
| pt-yodas-100 | 1,853.79 | 549.13 | 140.03 | 22.36 |
|
52 |
+
| pt-yodas-101 | 1,849.31 | 552.92 | 141.34 | 21.55 |
|
53 |
+
| pt-yodas-102 | 1,871.89 | 560.40 | 143.63 | 22.47 |
|
54 |
+
| pt-yodas-103 | 1,288.90 | 383.86 | 98.71 | 15.83 |
|
55 |
+
| total | 8,024.19 | 2,728.80 | 873.48 | 164.75 |
|
56 |
+
|
57 |
+
de
|
58 |
+
|
59 |
+
| Split | 20% | 10% | 5% | 0% |
|
60 |
+
| :--- | :---: | :---: | :---: | :---: |
|
61 |
+
| de-mcv | 875.27 | 862.86 | 720.29 | 324.03 |
|
62 |
+
| de-mls | 1,919.13 | 1,736.71 | 1,315.35 | 661.96 |
|
63 |
+
| de-voxpopuli | 232.27 | 146.60 | 70.01 | 17.32 |
|
64 |
+
| de-mtedx | 8.39 | 5.70 | 3.28 | 0.81 |
|
65 |
+
| de-yodas-000 | 1,607.82 | 925.94 | 476.64 | 128.54 |
|
66 |
+
| de-yodas-100 | 2,304.63 | 856.85 | 260.56 | 41.08 |
|
67 |
+
| de-yodas-101 | 2,343.04 | 875.50 | 265.74 | 40.33 |
|
68 |
+
| de-yodas-102 | 426.58 | 156.51 | 47.43 | 7.58 |
|
69 |
+
| total | 9,717.13 | 5,566.67 | 3,159.30 | 1,221.65 |
|
70 |
+
|
71 |
+
nl
|
72 |
+
|
73 |
+
| Split | 20% | 10% | 5% | 0% |
|
74 |
+
| :--- | :---: | :---: | :---: | :---: |
|
75 |
+
| nl-mcv | 41.02 | 40.81 | 35.81 | 12.01 |
|
76 |
+
| nl-mls | 1,455.24 | 1,133.02 | 692.95 | 253.02 |
|
77 |
+
| nl-voxpopuli | 38.86 | 23.20 | 9.50 | 1.79 |
|
78 |
+
| nl-yodas-000 | 215.26 | 108.59 | 44.07 | 6.59 |
|
79 |
+
| nl-yodas-100 | 512.37 | 127.16 | 31.75 | 5.48 |
|
80 |
+
| total | 2,262.75 | 1,432.78 | 814.08 | 278.89 |
|
81 |
+
|
82 |
+
en
|
83 |
+
|
84 |
+
| Split | 20% | 10% | 5% | 0% |
|
85 |
+
| :--- | :---: | :---: | :---: | :---: |
|
86 |
+
| en-mcv | 1,571.18 | 1,527.70 | 1,181.29 | 428.52 |
|
87 |
+
| en-ls | 951.31 | 932.31 | 852.46 | 450.89 |
|
88 |
+
| en-voxpopuli | 494.10 | 413.92 | 260.32 | 74.07 |
|
89 |
+
| en-tedlium | 448.05 | 416.95 | 312.36 | 78.16 |
|
90 |
+
| en-peoples_speech-clean | 5,652.32 | 3,474.44 | 1,160.46 | 73.02 |
|
91 |
+
| en-peoples_speech-clean_sa | 955.14 | 643.65 | 260.26 | 24.91 |
|
92 |
+
| en-peoples_speech-dirty | 8,664.09 | 1,414.41 | 181.96 | 5.35 |
|
93 |
+
| en-peoples_speech-dirty_sa | 972.02 | 206.29 | 35.34 | 1.65 |
|
94 |
+
| en-gigaspeech-l | 2,464.07 | 2,384.80 | 2,099.40 | 901.77 |
|
95 |
+
| en-ami-ihm | 50.84 | 19.54 | 5.44 | 0.46 |
|
96 |
+
| en-ami-sdm | 23.17 | 6.81 | 1.84 | 0.18 |
|
97 |
+
| en-yodas-000 | 3,699.62 | 2,902.96 | 1,891.37 | 487.83 |
|
98 |
+
| en-yodas-001 | 3,693.85 | 2,896.02 | 1,887.55 | 484.64 |
|
99 |
+
| en-yodas-002 | 3,687.30 | 2,890.38 | 1,895.27 | 487.38 |
|
100 |
+
| en-yodas-003 | 3,650.57 | 2,843.52 | 1,841.51 | 464.97 |
|
101 |
+
| en-yodas-004 | 3,710.20 | 2,907.12 | 1,890.28 | 477.85 |
|
102 |
+
| en-yodas-005 | 2,936.86 | 2,302.64 | 1,496.23 | 382.48 |
|
103 |
+
| en-yodas-100 | 3,831.71 | 2,692.86 | 1,496.27 | 286.69 |
|
104 |
+
| en-yodas-101 | 3,816.33 | 2,689.93 | 1,497.48 | 292.58 |
|
105 |
+
| en-yodas-102 | 3,826.86 | 2,701.17 | 1,501.30 | 286.49 |
|
106 |
+
| en-yodas-103 | 3,825.10 | 2,698.54 | 1,498.18 | 294.47 |
|
107 |
+
| en-yodas-104 | 2,449.36 | 1,717.38 | 948.36 | 184.66 |
|
108 |
+
| en-yodas-105 | 3,790.39 | 2,664.18 | 1,476.47 | 285.18 |
|
109 |
+
| en-yodas-106 | 3,800.00 | 2,678.34 | 1,487.09 | 287.32 |
|
110 |
+
| en-yodas-107 | 3,809.05 | 2,679.41 | 1,488.62 | 289.25 |
|
111 |
+
| en-yodas-109 | 3,791.46 | 2,677.90 | 1,492.26 | 290.38 |
|
112 |
+
| en-yodas-110 | 3,767.50 | 2,638.29 | 1,456.01 | 281.24 |
|
113 |
+
| en-yodas-111 | 3,801.11 | 2,671.89 | 1,486.27 | 287.74 |
|
114 |
+
| en-yodas-112 | 3,827.94 | 2,696.10 | 1,494.42 | 285.60 |
|
115 |
+
| en-yodas-113 | 3,817.43 | 2,681.09 | 1,489.73 | 289.74 |
|
116 |
+
| en-yodas-114 | 3,798.91 | 2,682.03 | 1,500.48 | 296.98 |
|
117 |
+
| en-yodas-115 | 3,811.49 | 2,682.46 | 1,487.23 | 288.86 |
|
118 |
+
| en-yodas-116 | 3,826.62 | 2,706.08 | 1,509.38 | 292.36 |
|
119 |
+
| en-yodas-117 | 3,808.30 | 2,684.16 | 1,497.32 | 293.84 |
|
120 |
+
| en-yodas-118 | 3,804.02 | 2,687.24 | 1,499.53 | 292.64 |
|
121 |
+
| en-yodas-119 | 3,809.40 | 2,697.34 | 1,508.54 | 296.01 |
|
122 |
+
| en-yodas-120 | 3,827.33 | 2,701.14 | 1,502.67 | 287.27 |
|
123 |
+
| en-yodas-121 | 3,800.26 | 2,677.95 | 1,488.84 | 290.16 |
|
124 |
+
| en-yodas-122 | 3,790.63 | 2,660.88 | 1,472.27 | 285.75 |
|
125 |
+
| en-yodas-123 | 3,785.27 | 2,677.23 | 1,494.34 | 289.47 |
|
126 |
+
| en-yodas-124 | 3,809.97 | 2,685.33 | 1,501.46 | 293.05 |
|
127 |
+
| en-yodas-125 | 3,783.51 | 2,659.93 | 1,475.39 | 288.66 |
|
128 |
+
| en-yodas-126 | 3,797.07 | 2,668.46 | 1,487.35 | 289.60 |
|
129 |
+
| en-yodas-127 | 1,769.64 | 1,247.31 | 699.89 | 137.38 |
|
130 |
+
| total | 143,001.36 | 98,188.11 | 56,190.49 | 12,387.48 |
|
131 |
+
|
132 |
+
cs
|
133 |
+
|
134 |
+
| Split | 20% | 10% | 5% | 0% |
|
135 |
+
| :--- | :---: | :---: | :---: | :---: |
|
136 |
+
| cs-mcv | 3,346.80 | 3,333.61 | 3,192.75 | 1,428.04 |
|
137 |
+
| cs-yodas | 6,465.59 | 6,434.34 | 4,967.96 | 572.10 |
|
138 |
+
| total | 9,812.39 | 9,767.94 | 8,160.72 | 2,000.14 |
|
get_stats.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 Bofeng Huang
|
4 |
+
|
5 |
+
import os
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
import fire
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from meta import SUBSET_NAMES_AND_PATHS
|
14 |
+
|
15 |
+
|
16 |
+
def _print_ds_info(df, duration_column_name="duration"):
|
17 |
+
print(f"#utterances: {df.shape[0]}")
|
18 |
+
durations = df["duration"]
|
19 |
+
print(
|
20 |
+
f"Duration statistics: tot {durations.sum() / 3600:.2f} h, "
|
21 |
+
f"mean {durations.mean():.2f} s, "
|
22 |
+
f"min {durations.min():.2f} s, "
|
23 |
+
f"max {durations.max():.2f} s"
|
24 |
+
)
|
25 |
+
print()
|
26 |
+
|
27 |
+
|
28 |
+
def main(output_file):
|
29 |
+
|
30 |
+
dataset_dir = os.path.dirname(os.path.abspath(__file__))
|
31 |
+
|
32 |
+
lang_manifests_dict = defaultdict(list)
|
33 |
+
for k, v in SUBSET_NAMES_AND_PATHS.items():
|
34 |
+
lang_manifests_dict[k.split("-")[0]].append((k, f'{dataset_dir}/{v["dir"]}/{v["text_file"]}'))
|
35 |
+
|
36 |
+
# print(lang_manifests_dict)
|
37 |
+
|
38 |
+
with open(output_file, "w") as f:
|
39 |
+
for lang, manifest_files in lang_manifests_dict.items():
|
40 |
+
f.write("\n" + lang + "\n" + "\n")
|
41 |
+
f.write("| Split | 20% | 10% | 5% | 0% |" + "\n")
|
42 |
+
f.write("| :--- | :---: | :---: | :---: | :---: |" + "\n")
|
43 |
+
|
44 |
+
lines = []
|
45 |
+
for split, manifest_file in tqdm(manifest_files):
|
46 |
+
# load dataset
|
47 |
+
df = pd.read_json(manifest_file, lines=True)
|
48 |
+
# print("Raw dataset")
|
49 |
+
# _print_ds_info(df)
|
50 |
+
|
51 |
+
# line = f"| {split} |"
|
52 |
+
|
53 |
+
# wer_cutoffs = [20, 10, 5, 0]
|
54 |
+
# for wer_cutoff in wer_cutoffs:
|
55 |
+
# df_ = df[df["wer"] <= wer_cutoff]
|
56 |
+
# # print(f"wer_cutoff: {wer_cutoff}")
|
57 |
+
# # _print_ds_info(df_)
|
58 |
+
|
59 |
+
# line += f' {df_["duration"].sum() / 3600:.2f} |'
|
60 |
+
|
61 |
+
# f.write(line + "\n")
|
62 |
+
|
63 |
+
l = [df[df["wer"] <= wer_cutoff]["duration"].sum() / 3600 for wer_cutoff in [20, 10, 5, 0]]
|
64 |
+
l.insert(0, split)
|
65 |
+
lines.append(l)
|
66 |
+
|
67 |
+
lines.append(
|
68 |
+
[
|
69 |
+
"total",
|
70 |
+
sum(l[1] for l in lines),
|
71 |
+
sum(l[2] for l in lines),
|
72 |
+
sum(l[3] for l in lines),
|
73 |
+
sum(l[4] for l in lines),
|
74 |
+
]
|
75 |
+
)
|
76 |
+
|
77 |
+
for l in lines:
|
78 |
+
f.write(f"| {l[0]} | " + " | ".join([f"{l_:,.2f}" for l_ in l[1:]]) + " |" + "\n")
|
79 |
+
|
80 |
+
# break
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
fire.Fire(main)
|