# coding=utf-8 # Copyright 2024 Bofeng Huang """ Audio utils. Adapted from https://github.com/facebookresearch/fairseq/blob/main/fairseq/data/audio/audio_utils.py """ import io import mmap import wave from pathlib import Path from typing import Any, BinaryIO, List, Optional, Tuple, Union import numpy as np import torch try: import soundfile as sf except ImportError: raise ImportError("Please install soundfile: pip install soundfile") try: import torchaudio.sox_effects as ta_sox except ImportError: raise ImportError("Please install torchaudio: pip install torchaudio") SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"} def convert_waveform( waveform: Union[np.ndarray, torch.Tensor], sample_rate: int, normalize_volume: bool = False, to_mono: bool = False, to_sample_rate: Optional[int] = None, ) -> Tuple[Union[np.ndarray, torch.Tensor], int]: """convert a waveform: - to a target sample rate - from multi-channel to mono channel - volume normalization Args: waveform (numpy.ndarray or torch.Tensor): 2D original waveform (channels x length) sample_rate (int): original sample rate normalize_volume (bool): perform volume normalization to_mono (bool): convert to mono channel if having multiple channels to_sample_rate (Optional[int]): target sample rate Returns: waveform (numpy.ndarray): converted 2D waveform (channels x length) sample_rate (float): target sample rate """ effects = [] if normalize_volume: effects.append(["gain", "-n"]) if to_sample_rate is not None and to_sample_rate != sample_rate: effects.append(["rate", f"{to_sample_rate}"]) if to_mono and waveform.shape[0] > 1: effects.append(["channels", "1"]) if len(effects) > 0: is_np_input = isinstance(waveform, np.ndarray) _waveform = torch.from_numpy(waveform) if is_np_input else waveform converted, converted_sample_rate = ta_sox.apply_effects_tensor( _waveform, sample_rate, effects ) if is_np_input: converted = converted.numpy() return converted, converted_sample_rate return waveform, sample_rate def get_waveform( path_or_fp: Union[str, BinaryIO], normalization: bool = True, mono: bool = True, frames: int = -1, start: int = 0, always_2d: bool = True, output_sample_rate: Optional[int] = None, normalize_volume: bool = False, # waveform_transforms: Optional[CompositeAudioWaveformTransform] = None, waveform_transforms: Any = None, ) -> Tuple[np.ndarray, int]: """Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. Args: path_or_fp (str or BinaryIO): the path or file-like object normalization (bool): normalize values to [-1, 1] (Default: True) mono (bool): convert multi-channel audio to mono-channel one frames (int): the number of frames to read. (-1 for reading all) start (int): Where to start reading. A negative value counts from the end. always_2d (bool): always return 2D array even for mono-channel audios output_sample_rate (Optional[int]): output sample rate normalize_volume (bool): normalize volume Returns: waveform (numpy.ndarray): 1D or 2D waveform (channels x length) sample_rate (float): sample rate """ if isinstance(path_or_fp, str): ext = Path(path_or_fp).suffix if ext not in SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f"Unsupported audio format: {ext}") waveform, sample_rate = sf.read( path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start ) waveform = waveform.T # T x C -> C x T # waveform, sample_rate = torchaudio.load(file_path, channels_first=True, frame_offset=start, num_frames=frames) waveform, sample_rate = convert_waveform( waveform, sample_rate, normalize_volume=normalize_volume, to_mono=mono, to_sample_rate=output_sample_rate, ) if not normalization: waveform *= 2**15 # denormalized to 16-bit signed integers if waveform_transforms is not None: waveform, sample_rate = waveform_transforms(waveform, sample_rate) if not always_2d: waveform = waveform.squeeze(axis=0) return waveform, sample_rate def get_waveform_from_stored_zip( path, byte_offset, byte_size, use_sample_rate=None, waveform_transforms=None, ): assert path.endswith(".zip") data = read_from_stored_zip(path, byte_offset, byte_size) f = io.BytesIO(data) # error on empty audio assert is_sf_audio_data(data), path return get_waveform( f, always_2d=False, output_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, ) def get_waveform_from_audio_or_stored_zip(path: str, use_sample_rate=None, waveform_transforms=None): """Get speech features from .npy file or waveform from .wav/.flac file. The file may be inside an uncompressed ZIP file and is accessed via byte offset and length. Args: path (str): File path in the format of "<.npy/.wav/.flac path>" or "::". need_waveform (bool): return waveform instead of features. use_sample_rate (int): change sample rate for the input wave file Returns: features_or_waveform (numpy.ndarray): speech features or waveform. """ _path, slice_ptr = parse_path(path) if len(slice_ptr) == 0: return get_waveform( _path, always_2d=False, output_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, ) elif len(slice_ptr) == 2: return get_waveform_from_stored_zip( _path, slice_ptr[0], slice_ptr[1], use_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, ) else: raise ValueError(f"Invalid path: {path}") def get_waveform_bytes_from_audio_or_stored_zip(path: str) -> bytes: _path, slice_ptr = parse_path(path) if len(slice_ptr) == 0: return get_waveform_bytes(_path) elif len(slice_ptr) == 2: return get_waveform_bytes_from_stored_zip( _path, slice_ptr[0], slice_ptr[1], ) else: raise ValueError(f"Invalid path: {path}") def get_waveform_bytes(path: str) -> bytes: with wave.open(path, "rb") as f: return f.readframes(f.getnframes()) def get_waveform_bytes_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes: # shift head of 44 bytes return read_from_stored_zip(zip_path, offset, length)[44:] def is_sf_audio_data(data: bytes) -> bool: is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70 is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97 is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103 return is_wav or is_flac or is_ogg def mmap_read(path: str, offset: int, length: int) -> bytes: with open(path, "rb") as f: # f.fileno() for file handle # length in bytes of the memory map # 0 is a special value indicating that the system should create a memory map large enough to hold the entire file # mmap mode should be compatible with open with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o: data = mmap_o[offset: offset + length] return data def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes: return mmap_read(zip_path, offset, length) def parse_path(path: str) -> Tuple[str, List[int]]: """Parse data path which is either a path to 1. a .npy/.wav/.flac/.ogg file 2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" Args: path (str): the data path to parse Returns: file_path (str): the file path slice_ptr (list of int): empty in case 1; byte offset and length for the slice in case 2 """ if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: _path, slice_ptr = path, [] else: _path, *slice_ptr = path.split(":") if not Path(_path).is_file(): raise FileNotFoundError(f"File not found: {_path}") assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" slice_ptr = [int(i) for i in slice_ptr] return _path, slice_ptr