# IEMOCAP with Curriculum Learning Metrics This dataset enhances the original IEMO_WAV_Diff_2 dataset with inter-evaluator agreement metrics for curriculum learning following Lotfian & Busso (2019). ## Additional Columns - `curriculum_order`: Training order (1=highest agreement, train first) - `overall_agreement`: Combined agreement score (0-1, higher is better) - `fleiss_kappa`: Categorical agreement (-1 to 1, higher is better) - `krippendorff_alpha`: Krippendorff's alpha for categorical reliability - `valence_std`, `arousal_std`, `dominance_std`: Standard deviation of dimensional ratings (lower is better) - `valence_icc`, `arousal_icc`, `dominance_icc`: Intraclass correlation coefficients (0-1, higher is better) - `n_categorical_evaluators`, `n_dimensional_evaluators`: Number of evaluators - `consensus_valence`, `consensus_arousal`, `consensus_dominance`: Consensus dimensional ratings ## Usage for Curriculum Learning Sort samples by `curriculum_order` and train on high-agreement samples first: ```python from datasets import load_dataset dataset = load_dataset("cairocode/IEMO_WAV_Diff_2_Curriculum") train_data = dataset["train"].sort("curriculum_order") # Start with high agreement samples easy_samples = train_data.filter(lambda x: x["overall_agreement"] > 0.5) hard_samples = train_data.filter(lambda x: x["overall_agreement"] < 0.5) ``` ## Citation If you use this dataset, please cite: - Original IEMOCAP: Busso et al. (2008) - Curriculum learning approach: Lotfian & Busso (2019) - Original dataset: cairocode/IEMO_WAV_Diff_2