Add dataset card with curriculum learning information
Browse files
README.md
CHANGED
|
@@ -1,73 +1,39 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
- name: valence_icc
|
| 41 |
-
dtype: float64
|
| 42 |
-
- name: arousal_icc
|
| 43 |
-
dtype: float64
|
| 44 |
-
- name: dominance_icc
|
| 45 |
-
dtype: float64
|
| 46 |
-
- name: n_categorical_evaluators
|
| 47 |
-
dtype: int64
|
| 48 |
-
- name: n_dimensional_evaluators
|
| 49 |
-
dtype: int64
|
| 50 |
-
- name: consensus_valence
|
| 51 |
-
dtype: float64
|
| 52 |
-
- name: consensus_arousal
|
| 53 |
-
dtype: float64
|
| 54 |
-
- name: consensus_dominance
|
| 55 |
-
dtype: float64
|
| 56 |
-
- name: naturalness_std
|
| 57 |
-
dtype: float64
|
| 58 |
-
- name: naturalness_icc
|
| 59 |
-
dtype: float64
|
| 60 |
-
- name: consensus_naturalness
|
| 61 |
-
dtype: float64
|
| 62 |
-
splits:
|
| 63 |
-
- name: train
|
| 64 |
-
num_bytes: 2803902170.0
|
| 65 |
-
num_examples: 7798
|
| 66 |
-
download_size: 2739152711
|
| 67 |
-
dataset_size: 2803902170.0
|
| 68 |
-
configs:
|
| 69 |
-
- config_name: default
|
| 70 |
-
data_files:
|
| 71 |
-
- split: train
|
| 72 |
-
path: data/train-*
|
| 73 |
-
---
|
|
|
|
| 1 |
+
|
| 2 |
+
# IEMOCAP with Curriculum Learning Metrics
|
| 3 |
+
|
| 4 |
+
This dataset enhances the original IEMO_WAV_Diff_2 dataset with inter-evaluator agreement metrics
|
| 5 |
+
for curriculum learning following Lotfian & Busso (2019).
|
| 6 |
+
|
| 7 |
+
## Additional Columns
|
| 8 |
+
|
| 9 |
+
- `curriculum_order`: Training order (1=highest agreement, train first)
|
| 10 |
+
- `overall_agreement`: Combined agreement score (0-1, higher is better)
|
| 11 |
+
- `fleiss_kappa`: Categorical agreement (-1 to 1, higher is better)
|
| 12 |
+
- `krippendorff_alpha`: Krippendorff's alpha for categorical reliability
|
| 13 |
+
- `valence_std`, `arousal_std`, `dominance_std`: Standard deviation of dimensional ratings (lower is better)
|
| 14 |
+
- `valence_icc`, `arousal_icc`, `dominance_icc`: Intraclass correlation coefficients (0-1, higher is better)
|
| 15 |
+
- `n_categorical_evaluators`, `n_dimensional_evaluators`: Number of evaluators
|
| 16 |
+
- `consensus_valence`, `consensus_arousal`, `consensus_dominance`: Consensus dimensional ratings
|
| 17 |
+
|
| 18 |
+
## Usage for Curriculum Learning
|
| 19 |
+
|
| 20 |
+
Sort samples by `curriculum_order` and train on high-agreement samples first:
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from datasets import load_dataset
|
| 24 |
+
|
| 25 |
+
dataset = load_dataset("cairocode/MSPI_WAV_Diff_Curriculum")
|
| 26 |
+
train_data = dataset["train"].sort("curriculum_order")
|
| 27 |
+
|
| 28 |
+
# Start with high agreement samples
|
| 29 |
+
easy_samples = train_data.filter(lambda x: x["overall_agreement"] > 0.5)
|
| 30 |
+
hard_samples = train_data.filter(lambda x: x["overall_agreement"] < 0.5)
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## Citation
|
| 34 |
+
|
| 35 |
+
If you use this dataset, please cite:
|
| 36 |
+
|
| 37 |
+
- Original IEMOCAP: Busso et al. (2008)
|
| 38 |
+
- Curriculum learning approach: Lotfian & Busso (2019)
|
| 39 |
+
- Original dataset: cairocode/IEMO_WAV_Diff_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|