--- extra_gated_prompt: 'The song_structure dataset contains links to web audios used for data collection purposes. song_structure does not own or claim rights to the content linked within this dataset; all rights and copyright remain with the respective content creators and channel owners. Users are responsible for ensuring compliance with the terms and conditions of the platforms hosting these audios.' extra_gated_fields: I acknowledge that song_structure does not own the audios linked in this dataset: checkbox I acknowledge that song_structure is not the original creator of the audios in this dataset: checkbox ? I understand that song_structure may modify or remove dataset content at the request of content creators or in accordance with platform policies : checkbox I accept the dataset license terms (CC-BY-NC-ND-4): checkbox I agree to use this dataset for non-commercial use ONLY: checkbox license: cc-by-nc-nd-4.0 task_categories: - time-series-forecasting language: - en tags: - music - art pretty_name: Song Structure Annotation Database size_categories: - n<1K dataset_info: - config_name: default features: - name: audio dtype: audio: sampling_rate: 22050 - name: mel dtype: image - name: label sequence: - name: onset_time dtype: uint32 - name: offset_time dtype: uint32 - name: structure dtype: string splits: - name: train num_bytes: 175969 num_examples: 300 download_size: 2308839939 dataset_size: 175969 configs: - config_name: default data_files: - split: train path: default/train/data-*.arrow --- # Dataset Card for Song Structure The raw dataset comprises 300 pop songs in .mp3 format, sourced from the NetEase music, accompanied by a structure annotation file for each song in .txt format. The annotator for music structure is a professional musician and teacher from the China Conservatory of Music. For the statistics of the dataset, there are 208 Chinese songs, 87 English songs, three Korean songs and two Japanese songs. The song structures are labeled as follows: intro, re-intro, verse, chorus, pre-chorus, post-chorus, bridge, interlude and ending. Below figure shows the frequency of each segment label that appears in the set. The labels chorus and verse are the two most prevalent segment labels in the dataset and they are the most common segment in Western popular music. Among them, the number of “Postchorus” tags is the least, with only two present. ![](https://www.modelscope.cn/datasets/ccmusic-database/song_structure/resolve/master/data/msa.png) ## Dataset Structure
audio mel label
.mp3, 22050Hz .jpg, 22050Hz {onset_time:uint32,offset_time:uint32,structure:string}
### Data Instances .zip(.mp3), .txt ### Data Fields ```txt intro, chorus, verse, pre-chorus, post-chorus, bridge, ending ``` ### Data Split train ## Dataset Description ### Dataset Summary Unlike the above three datasets for classification, this one has not undergone pre-processing such as spectrogram transform. Thus we provide the original content only. The integrated version of the dataset is organized based on audio files, with each item structured into three columns: The first column contains the audio of the song in .mp3 format, sampled at 22,050 Hz. The second column consists of lists indicating the time points that mark the boundaries of different song sections, while the third column contains lists corresponding to the labels of the song structures listed in the second column. Strictly speaking, the first column represents the data, while the subsequent two columns represent the label. ### Supported Tasks and Leaderboards time-series-forecasting ### Languages Chinese, English ## Usage ```python from datasets import load_dataset dataset = load_dataset( "ccmusic-database/song_structure", name="default", split="train", token="Your_Access_Token", ) for item in dataset: print(item) ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:datasets/ccmusic-database/song_structure cd song_structure ``` ## Mirror ## Dataset Creation ### Curation Rationale Lack of a dataset for song structure ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Monan Zhou #### Who are the source language producers? Students from CCMUSIC ### Annotations #### Annotation process Students from CCMUSIC collected 300 pop songs, as well as a structure annotation file for each song #### Who are the annotators? Students from CCMUSIC ### Personal and Sensitive Information Due to copyright issues with the original music, only features of audio by frame are provided in the dataset ## Considerations for Using the Data ### Social Impact of Dataset Promoting the development of the AI music industry ### Discussion of Biases Only for mp3 ### Other Known Limitations Most are Chinese songs ## Additional Information ### Dataset Curators Zijin Li ### Evaluation ### Contributions Provide a dataset for song structure