Datasets:
File size: 5,144 Bytes
377cc78 fa99664 ca66330 242afee ca66330 2f14db7 ca66330 2f14db7 ca66330 2f14db7 ca66330 242afee ca66330 2f14db7 ca66330 2f14db7 ca66330 2f14db7 ca66330 377cc78 fa99664 2f14db7 8df8978 fa99664 8df8978 fa99664 2f14db7 fa99664 8df8978 fa99664 8df8978 fa99664 8df8978 fa99664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: mit
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Timbre and Range Dataset
size_categories:
- 1K<n<10K
dataset_info:
- config_name: timbre
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': Base
'1': Split
'2': Short
- name: score1
dtype: float64
- name: score2
dtype: float64
- name: avg_score
dtype: float64
splits:
- name: train
num_bytes: 213644
num_examples: 537
- name: validation
num_bytes: 26664
num_examples: 67
- name: test
num_bytes: 27088
num_examples: 68
download_size: 595425921
dataset_size: 267396
- config_name: range
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': Narrow
'1': Moderate
'2': Wide
splits:
- name: train
num_bytes: 210052
num_examples: 580
- name: validation
num_bytes: 26462
num_examples: 73
- name: test
num_bytes: 26400
num_examples: 73
download_size: 65309164
dataset_size: 262914
configs:
- config_name: timbre
data_files:
- split: train
path: timbre/train/data-*.arrow
- split: validation
path: timbre/validation/data-*.arrow
- split: test
path: timbre/test/data-*.arrow
- config_name: range
data_files:
- split: train
path: range/train/data-*.arrow
- split: validation
path: range/validation/data-*.arrow
- split: test
path: range/test/data-*.arrow
---
# Dataset Card for Timbre and Range Dataset
## Dataset Summary
The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format)
The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format).
### Supported Tasks and Leaderboards
Audio classification
### Languages
Chinese, English
## Dataset Structure
<https://huggingface.co/datasets/ccmusic-database/timbre_range/viewer>
### Data Instances
.zip(.wav, .jpg), .csv
### Data Fields
```txt
timbre: song1-32
range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81
```
### Data Splits
Train, Validation, Test
## Usage
### Timbre subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/timbre_range", name="timbre")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
### Range subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/timbre_range", name="range")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/timbre_range
cd timbre_range
```
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range>
## Dataset Creation
### Curation Rationale
Promoting the development of music AI industry
### Source Data
#### Initial Data Collection and Normalization
Zijin Li, Zhaorui Liu, Monan Zhou
#### Who are the source language producers?
Composers of the songs in dataset
### Annotations
#### Annotation process
CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips
#### Who are the annotators?
Students from CCMUSIC
### Personal and Sensitive Information
Due to copyright issues with the original music, only acapella singing audios are provided in the dataset
## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry
### Discussion of Biases
Most are Chinese songs
### Other Known Limitations
Samples are not balanced enough
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
[1] [Yiliang, J. et al. (2019) 'Data Augmentation based Convolutional Neural Network for Auscultation', Journal of Fudan University(Natural Science), pp. 328-334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3)
### Citation Information
```bibtex
@article{2019Data,
title={Data Augmentation based Convolutional Neural Network for Auscultation},
author={Yiliang Jiang and Xulong Zhang and Jin Deng and Wenqiang Zhang and Wei Li},
journal={Journal of Fudan University (Natural Science)},
year={2019},
}
```
### Contributions
Provide a dataset for music timbre and range |