File size: 5,144 Bytes
377cc78
 
fa99664
 
 
 
 
 
 
 
 
 
 
ca66330
 
 
 
 
 
 
 
 
 
242afee
 
 
 
 
 
ca66330
 
 
 
 
 
 
 
2f14db7
 
ca66330
2f14db7
 
ca66330
2f14db7
 
 
 
ca66330
 
 
 
 
 
 
 
 
242afee
 
 
 
 
 
ca66330
 
2f14db7
 
ca66330
2f14db7
 
ca66330
2f14db7
 
 
 
ca66330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377cc78
fa99664
 
 
 
 
 
 
 
 
 
 
 
 
2f14db7
8df8978
fa99664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df8978
fa99664
 
 
 
 
 
 
 
 
 
 
 
 
2f14db7
fa99664
 
 
8df8978
 
 
fa99664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df8978
fa99664
 
 
 
 
8df8978
 
fa99664
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
license: mit
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Timbre and Range Dataset
size_categories:
- 1K<n<10K
dataset_info:
  - config_name: timbre
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 44100
      - name: mel
        dtype: image
      - name: label
        dtype: 
          class_label:
            names:
                '0': Base
                '1': Split
                '2': Short
      - name: score1
        dtype: float64
      - name: score2
        dtype: float64
      - name: avg_score
        dtype: float64
    splits:
      - name: train
        num_bytes: 213644
        num_examples: 537
      - name: validation
        num_bytes: 26664
        num_examples: 67
      - name: test
        num_bytes: 27088
        num_examples: 68
    download_size: 595425921
    dataset_size: 267396
  - config_name: range
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 44100
      - name: mel
        dtype: image
      - name: label
        dtype:
          class_label:
            names:
                '0': Narrow
                '1': Moderate
                '2': Wide
    splits:
      - name: train
        num_bytes: 210052
        num_examples: 580
      - name: validation
        num_bytes: 26462
        num_examples: 73
      - name: test
        num_bytes: 26400
        num_examples: 73
    download_size: 65309164
    dataset_size: 262914
configs:
  - config_name: timbre
    data_files:
      - split: train
        path: timbre/train/data-*.arrow
      - split: validation
        path: timbre/validation/data-*.arrow
      - split: test
        path: timbre/test/data-*.arrow
  - config_name: range
    data_files:
      - split: train
        path: range/train/data-*.arrow
      - split: validation
        path: range/validation/data-*.arrow
      - split: test
        path: range/test/data-*.arrow
---

# Dataset Card for Timbre and Range Dataset
## Dataset Summary
The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format)
The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format).

### Supported Tasks and Leaderboards
Audio classification

### Languages
Chinese, English

## Dataset Structure
<https://huggingface.co/datasets/ccmusic-database/timbre_range/viewer>

### Data Instances
.zip(.wav, .jpg), .csv

### Data Fields
```txt
timbre: song1-32
range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81
```

### Data Splits
Train, Validation, Test

## Usage
### Timbre subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/timbre_range", name="timbre")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

### Range subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/timbre_range", name="range")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/timbre_range
cd timbre_range
```

## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range>

## Dataset Creation
### Curation Rationale
Promoting the development of music AI industry

### Source Data
#### Initial Data Collection and Normalization
Zijin Li, Zhaorui Liu, Monan Zhou

#### Who are the source language producers?
Composers of the songs in dataset

### Annotations
#### Annotation process
CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips

#### Who are the annotators?
Students from CCMUSIC

### Personal and Sensitive Information
Due to copyright issues with the original music, only acapella singing audios are provided in the dataset

## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry

### Discussion of Biases
Most are Chinese songs

### Other Known Limitations
Samples are not balanced enough

## Additional Information
### Dataset Curators
Zijin Li

### Evaluation
[1] [Yiliang, J. et al. (2019) 'Data Augmentation based Convolutional Neural Network for Auscultation', Journal of Fudan University(Natural Science), pp. 328-334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3)

### Citation Information
```bibtex
@article{2019Data,
  title={Data Augmentation based Convolutional Neural Network for Auscultation},
  author={Yiliang Jiang and Xulong Zhang and Jin Deng and Wenqiang Zhang and Wei Li},
  journal={Journal of Fudan University (Natural Science)},
  year={2019},
}
```

### Contributions
Provide a dataset for music timbre and range