bu_radio / bu_radio.py
cdminix's picture
remove unneeded imports
e0a9137
raw
history blame
6.69 kB
"""(BURN) Boston University Radio News Corpus."""
import os
from pathlib import Path
import datasets
import numpy as np
logger = datasets.logging.get_logger(__name__)
_PATH = os.environ.get("BURN_PATH", None)
_VERSION = "0.0.2"
_CITATION = """\
@article{ostendorf1995boston,
title={The Boston University radio news corpus},
author={Ostendorf, Mari and Price, Patti J and Shattuck-Hufnagel, Stefanie},
journal={Linguistic Data Consortium},
pages={1--19},
year={1995}
}
"""
_DESCRIPTION = """\
The Boston University Radio Speech Corpus was collected primarily to support research in text-to-speech synthesis, particularly generation of prosodic patterns. The corpus consists of professionally read radio news data, including speech and accompanying annotations, suitable for speech and language research.
"""
_URL = "https://catalog.ldc.upenn.edu/LDC96S36"
class BURNConfig(datasets.BuilderConfig):
"""BuilderConfig for BURN."""
def __init__(self, sampling_rate=16000, hop_length=256, win_length=1024, **kwargs):
"""BuilderConfig for BURN.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(BURNConfig, self).__init__(**kwargs)
self.sampling_rate = sampling_rate
self.hop_length = hop_length
self.win_length = win_length
self.seconds_per_frame = hop_length / sampling_rate
if _PATH is None:
raise ValueError("Please set the environment variable BURN_PATH to point to the BURN dataset directory.")
class BURN(datasets.GeneratorBasedBuilder):
"""BURN dataset."""
BUILDER_CONFIGS = [
BURNConfig(
name="burn",
version=datasets.Version(_VERSION, ""),
),
]
def _info(self):
features = {
"speaker": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"word_durations": datasets.Sequence(datasets.Value("int32")),
"prominence": datasets.Sequence(datasets.Value("bool")),
"break": datasets.Sequence(datasets.Value("bool")),
"audio": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=["prominence", "break"],
homepage="https://catalog.ldc.upenn.edu/LDC96S36",
citation=_CITATION,
task_templates=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"speakers": ["f1a", "f3a", "m1b", "m2b", "m3b", "m4b"],
}
),
datasets.SplitGenerator(
name="dev",
gen_kwargs={
"speakers": [],
}
),
]
def _generate_example(self, file):
words = []
word_ts = []
word_durations = []
if not file.with_suffix(".ton").exists():
return None
if not file.with_suffix(".brk").exists():
return None
if not file.with_suffix(".wrd").exists():
return None
with open(file.with_suffix(".wrd"), "r") as f:
lines = f.readlines()
lines = [line for line in lines if line != "\n"]
# get index of "#\n" line
idx = lines.index("#\n")
lines = lines[idx+1:]
lines = [tuple(line.strip().split()) for line in lines]
# remove lines with no word
lines = [line for line in lines if len(line) == 3]
word_ts = np.array([float(start) for start, _, _ in lines])
words = [word for _, _, word in lines]
prominence = np.zeros(len(words))
boundary = np.zeros(len(words))
if len(words) <= 1:
return None
with open(file.with_suffix(".ton"), "r") as f:
lines = f.readlines()
lines = [line for line in lines if line != "\n"]
wrd_idx = 0
idx = lines.index("#\n")
lines = lines[idx+1:]
lines = [tuple(line.strip().split()[:3]) for line in lines]
# remove lines with no word
lines = [line for line in lines if len(line) == 3]
for start, _, accent in lines:
# find word index
while float(start) > word_ts[wrd_idx]:
wrd_idx += 1
if wrd_idx >= len(word_ts):
# warning
logger.warning(f"Word index {wrd_idx} out of bounds for file {file}")
return None
if accent in ['H*', 'L*', 'L*+H', 'L+H*', 'H+', '!H*']:
prominence[wrd_idx] = 1
with open(file.with_suffix(".brk"), "r") as f:
lines = f.readlines()
lines = [line for line in lines if line != "\n"]
wrd_idx = 0
idx = lines.index("#\n")
lines = lines[idx+1:]
lines = [tuple(line.strip().split()) for line in lines]
if np.abs(len(lines) - len(words)) > 2:
logger.warning(f"Word count mismatch for file {file}")
return None
for l in lines:
if len(l) < 3:
continue
score = l[2]
start = float(l[0])
# find word index, by finding the start value closest to word_ts
wrd_idx = np.argmin(np.abs(word_ts - start))
if "3" in score or "4" in score:
boundary[wrd_idx] = 1
# compute word durations using self.config.seconds_per_frame
word_diff = np.concatenate([[word_ts[0]], np.diff(word_ts)])
word_durations = np.round(word_diff / self.config.seconds_per_frame).astype(np.int32)
return {
"words": words,
"word_durations": word_durations,
"prominence": prominence,
"break": boundary,
"audio": str(file),
}
def _generate_examples(self, speakers):
files = list((Path(_PATH)).glob(f"**/*.sph"))
speakers = [str(file).replace(_PATH, "").split("/")[1] for file in files]
#speaker_list.extend([speaker] * len(speaker_sph_files))
j = 0
for i, file in enumerate(files):
example = self._generate_example(file)
if example is not None:
example["speaker"] = speakers[i]
yield j, example
j += 1