chen1028 commited on
Commit
c906179
·
verified ·
1 Parent(s): dcf733e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -6,13 +6,13 @@ tags:
6
  - chemistry
7
  - mass-spectrometry
8
  - isotopic-patterns
9
- - chlorine
10
  - tabular
 
11
  pretty_name: Cl-Containing Compound (MS1 Features)
12
  size_categories:
13
  - 100K<n<1M
14
  source_datasets:
15
- - PubChem (molecular formulas)
16
  task_categories:
17
  - tabular-classification
18
  configs:
@@ -22,6 +22,12 @@ configs:
22
  path: 80%_618272_train_binary.rds
23
  - split: test
24
  path: 20%_154568_test_binary.rds
 
 
 
 
 
 
25
  dataset_info:
26
  features:
27
  - name: mz0
@@ -42,4 +48,47 @@ dataset_info:
42
  ---
43
 
44
  # Dataset Summary
45
- Binary classification of chlorine presence from simulated MS1 isotopic features (mz0, int2_o_int0, int1_o_int0, RI2_RI1, mz_2_0, mz_1_0). Splits: 80% train (618,272), 20% test
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - chemistry
7
  - mass-spectrometry
8
  - isotopic-patterns
 
9
  - tabular
10
+ - chlorine
11
  pretty_name: Cl-Containing Compound (MS1 Features)
12
  size_categories:
13
  - 100K<n<1M
14
  source_datasets:
15
+ - pubchem
16
  task_categories:
17
  - tabular-classification
18
  configs:
 
22
  path: 80%_618272_train_binary.rds
23
  - split: test
24
  path: 20%_154568_test_binary.rds
25
+ - config_name: csv
26
+ data_files:
27
+ - split: train
28
+ path: train.csv
29
+ - split: test
30
+ path: test.csv
31
  dataset_info:
32
  features:
33
  - name: mz0
 
48
  ---
49
 
50
  # Dataset Summary
51
+ Binary classification of chlorine presence using simulated MS1 isotopic patterns. Inputs are six engineered features; label has_cl indicates Cl-containing (1) vs non-Cl (0).
52
+
53
+ ## Data Sources and Generation
54
+ - Simulated MS1 peaks (M, M+1, M+2, M+3, M+4) for PubChem molecular formulas.
55
+ - Counts: 968,442 non-Cl; 386,420 Cl (1Cl: 185,303; 2Cl: 117,566; 3–5Cl: 83,551).
56
+ - Features: mz0, int2_o_int0, int1_o_int0, RI2_RI1, mz_2_0, mz_1_0.
57
+ - Class balancing: downsampled non-Cl to 386,420 (total 772,840).
58
+ - Splits: 80% train (618,272), 20% test (154,568).
59
+ - Files: 968442_non_cl_filter_S10.rds, 386420_cl_data.rds, 80%_618272_train_binary.rds, 20%_154568_test_binary.rds.
60
+
61
+ ## Features
62
+ - mz0: m/z of M
63
+ - int2_o_int0: intensity ratio M+2/M
64
+ - int1_o_int0: intensity ratio M+1/M
65
+ - RI2_RI1: (M+2/M) − (M+1/M)
66
+ - mz_2_0: m/z(M+2) − m/z(M)
67
+ - mz_1_0: m/z(M+1) − m/z(M)
68
+ - has_cl: target label (0/1)
69
+
70
+ ## Usage
71
+ ```python
72
+ from datasets import load_dataset
73
+
74
+ # If you convert to CSV (recommended for Hub viewers)
75
+ ds = load_dataset(
76
+ "chen1028/Cl-Containing-Compound",
77
+ name="csv",
78
+ data_files={"train":"train.csv","test":"test.csv"}
79
+ )
80
+ ```
81
+
82
+ ## Citation
83
+ ```bibtex
84
+ @article{doi:10.1021/acs.analchem.3c05124,
85
+ author = {Zhao, Tingting and Wawryk, Nicholas J. P. and Xing, Shipei and Low, Brian and Li, Gigi and Yu, Huaxu and Wang, Yukai and Shen, Qiming and Li, Xing-Fang and Huan, Tao},
86
+ title = {ChloroDBPFinder: Machine Learning-Guided Recognition of Chlorinated Disinfection Byproducts from Nontargeted LC-HRMS Analysis},
87
+ journal = {Analytical Chemistry},
88
+ volume = {96},
89
+ number = {6},
90
+ pages = {2590-2598},
91
+ year = {2024},
92
+ doi = {10.1021/acs.analchem.3c05124},
93
+ note = {PMID: 38294426},
94
+ url = {https://doi.org/10.1021/acs.analchem.3c05124},