Datasets:
Tasks:
Tabular Classification
Modalities:
Tabular
Languages:
No linguistic content
Size:
100K<n<1M
License:
Update README.md
Browse files
README.md
CHANGED
@@ -6,13 +6,13 @@ tags:
|
|
6 |
- chemistry
|
7 |
- mass-spectrometry
|
8 |
- isotopic-patterns
|
9 |
-
- chlorine
|
10 |
- tabular
|
|
|
11 |
pretty_name: Cl-Containing Compound (MS1 Features)
|
12 |
size_categories:
|
13 |
- 100K<n<1M
|
14 |
source_datasets:
|
15 |
-
-
|
16 |
task_categories:
|
17 |
- tabular-classification
|
18 |
configs:
|
@@ -22,6 +22,12 @@ configs:
|
|
22 |
path: 80%_618272_train_binary.rds
|
23 |
- split: test
|
24 |
path: 20%_154568_test_binary.rds
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
dataset_info:
|
26 |
features:
|
27 |
- name: mz0
|
@@ -42,4 +48,47 @@ dataset_info:
|
|
42 |
---
|
43 |
|
44 |
# Dataset Summary
|
45 |
-
Binary classification of chlorine presence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- chemistry
|
7 |
- mass-spectrometry
|
8 |
- isotopic-patterns
|
|
|
9 |
- tabular
|
10 |
+
- chlorine
|
11 |
pretty_name: Cl-Containing Compound (MS1 Features)
|
12 |
size_categories:
|
13 |
- 100K<n<1M
|
14 |
source_datasets:
|
15 |
+
- pubchem
|
16 |
task_categories:
|
17 |
- tabular-classification
|
18 |
configs:
|
|
|
22 |
path: 80%_618272_train_binary.rds
|
23 |
- split: test
|
24 |
path: 20%_154568_test_binary.rds
|
25 |
+
- config_name: csv
|
26 |
+
data_files:
|
27 |
+
- split: train
|
28 |
+
path: train.csv
|
29 |
+
- split: test
|
30 |
+
path: test.csv
|
31 |
dataset_info:
|
32 |
features:
|
33 |
- name: mz0
|
|
|
48 |
---
|
49 |
|
50 |
# Dataset Summary
|
51 |
+
Binary classification of chlorine presence using simulated MS1 isotopic patterns. Inputs are six engineered features; label has_cl indicates Cl-containing (1) vs non-Cl (0).
|
52 |
+
|
53 |
+
## Data Sources and Generation
|
54 |
+
- Simulated MS1 peaks (M, M+1, M+2, M+3, M+4) for PubChem molecular formulas.
|
55 |
+
- Counts: 968,442 non-Cl; 386,420 Cl (1Cl: 185,303; 2Cl: 117,566; 3–5Cl: 83,551).
|
56 |
+
- Features: mz0, int2_o_int0, int1_o_int0, RI2_RI1, mz_2_0, mz_1_0.
|
57 |
+
- Class balancing: downsampled non-Cl to 386,420 (total 772,840).
|
58 |
+
- Splits: 80% train (618,272), 20% test (154,568).
|
59 |
+
- Files: 968442_non_cl_filter_S10.rds, 386420_cl_data.rds, 80%_618272_train_binary.rds, 20%_154568_test_binary.rds.
|
60 |
+
|
61 |
+
## Features
|
62 |
+
- mz0: m/z of M
|
63 |
+
- int2_o_int0: intensity ratio M+2/M
|
64 |
+
- int1_o_int0: intensity ratio M+1/M
|
65 |
+
- RI2_RI1: (M+2/M) − (M+1/M)
|
66 |
+
- mz_2_0: m/z(M+2) − m/z(M)
|
67 |
+
- mz_1_0: m/z(M+1) − m/z(M)
|
68 |
+
- has_cl: target label (0/1)
|
69 |
+
|
70 |
+
## Usage
|
71 |
+
```python
|
72 |
+
from datasets import load_dataset
|
73 |
+
|
74 |
+
# If you convert to CSV (recommended for Hub viewers)
|
75 |
+
ds = load_dataset(
|
76 |
+
"chen1028/Cl-Containing-Compound",
|
77 |
+
name="csv",
|
78 |
+
data_files={"train":"train.csv","test":"test.csv"}
|
79 |
+
)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
```bibtex
|
84 |
+
@article{doi:10.1021/acs.analchem.3c05124,
|
85 |
+
author = {Zhao, Tingting and Wawryk, Nicholas J. P. and Xing, Shipei and Low, Brian and Li, Gigi and Yu, Huaxu and Wang, Yukai and Shen, Qiming and Li, Xing-Fang and Huan, Tao},
|
86 |
+
title = {ChloroDBPFinder: Machine Learning-Guided Recognition of Chlorinated Disinfection Byproducts from Nontargeted LC-HRMS Analysis},
|
87 |
+
journal = {Analytical Chemistry},
|
88 |
+
volume = {96},
|
89 |
+
number = {6},
|
90 |
+
pages = {2590-2598},
|
91 |
+
year = {2024},
|
92 |
+
doi = {10.1021/acs.analchem.3c05124},
|
93 |
+
note = {PMID: 38294426},
|
94 |
+
url = {https://doi.org/10.1021/acs.analchem.3c05124},
|