chenbr7 commited on
Commit
ceed611
·
verified ·
1 Parent(s): c862940

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -3
README.md CHANGED
@@ -1,3 +1,86 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ ---
4
+ # TransFrag27K: Transparent Fragment Dataset
5
+
6
+ ## Dataset Summary
7
+ This script was used to create the **first large-scale transparent fragment dataset, TransFrag27K**, which contains **27,000 images and masks** at a resolution of **640×480**. The dataset covers fragments of common everyday glassware and incorporates **more than 150 background textures** and **100 HDRI environment lightings**.
8
+
9
+ Transparent objects, being a special category, have **refractive and transmissive material properties** that make their visual features highly sensitive to environmental lighting and background. In real-world scenarios, collecting data of transparent objects with diverse backgrounds and lighting conditions is challenging, and annotations are prone to errors due to difficulties in recognition.
10
+
11
+ To address this, we designed an **automated dataset generation pipeline in Blender**:
12
+ - Objects are randomly fractured using the **Cell Fracture plugin**.
13
+ - Parametric scripts batch-adjust lighting, backgrounds, and camera poses.
14
+ - Rendering is performed automatically to output paired RGB images and binary masks.
15
+
16
+ The dataset is generated using this Blender script. Please refer to:
17
+ [GitHub Repository](https://github.com/Keithllin/Transparent-Fragments-Contour-Estimation)
18
+
19
+ ---
20
+
21
+ ## Related Paper
22
+ **Transparent Fragments Contour Estimation via Visual-Tactile Fusion for Autonomous Reassembly**
23
+ *(Lin et al., 2025)*
24
+
25
+ ---
26
+
27
+ ## Supported Tasks
28
+ - **Semantic Segmentation**
29
+
30
+ ---
31
+
32
+ ## Dataset Structure
33
+ In our released dataset, to facilitate subsequent customized processing, we organize each object’s data in the following structure:
34
+
35
+ ```├─TransFrag27K
36
+ │ ├─Planar1
37
+ │ │ ├─anno_mask
38
+ │ │ └─rgb
39
+ │ ├─Planar2
40
+ │ │ ├─anno_mask
41
+ │ │ └─rgb
42
+ │ ├─Curved1
43
+ │ │ ├─anno_mask
44
+ │ │ └─rgb
45
+ │ ├─Curved2
46
+ │ │ ├─anno_mask
47
+ │ │ └─rgb
48
+ │ ├─Irregular1
49
+ │ │ ├─anno_mask
50
+ │ │ └─rgb
51
+ │ ├─Irregular2
52
+ │ │ ├─anno_mask
53
+ │ │ └─rgb
54
+ │ ├─Irregular3
55
+ │ │ ├─anno_mask
56
+ │ │ └─rgb
57
+ ```
58
+
59
+
60
+ We mainly organize the dataset according to the **shape classes** of transparent fragments:
61
+ - **Planar**
62
+ Mainly includes fragments from flat regions such as dish bottoms and glass bases.
63
+ - **Curved**
64
+ Mainly includes fragments from objects with cylindrical or spherical curvature, such as cups, bottles, and bowls.
65
+ - **Irregular**
66
+ Mainly includes fragments with multiple curvature patterns or discontinuous surfaces, such as the intersection of a cup wall and bottom, special bottle necks, wine glass stems, and handles.
67
+
68
+ ---
69
+
70
+ ## Usage Example
71
+ ```python
72
+ from datasets import load_dataset
73
+
74
+ dataset = load_dataset("your-username/TransFrag27K")
75
+ print(dataset["train"][0])
76
+ ```
77
+ ##Citation
78
+ If you use this dataset, please cite the following paper:
79
+ ```
80
+ @article{lin2025transparent,
81
+ title={Transparent Fragments Contour Estimation via Visual-Tactile Fusion for Autonomous Reassembly},
82
+ author={Lin, XXX and others},
83
+ year={2025},
84
+ journal={TBD}
85
+ }
86
+ ```