Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 3,633 Bytes
caa900d
 
f0a4b2d
 
e214786
f0a4b2d
e214786
f0a4b2d
e214786
f0a4b2d
e214786
f0a4b2d
 
 
 
 
 
 
 
 
 
caa900d
e74990d
 
caa900d
 
 
 
e74990d
 
 
 
caa900d
 
 
 
 
f0a4b2d
 
 
 
caa900d
05dd49c
 
 
 
 
54247ee
05dd49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a49c9f
05dd49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
dataset_info:
- config_name: alias-resolution
  features:
  - name: form
    dtype: string
  - name: type
    dtype: string
  - name: mentions
    dtype: int64
  - name: entity
    dtype: string
  - name: novel
    dtype: string
  splits:
  - name: train
    num_bytes: 395702
    num_examples: 5985
  download_size: 117587
  dataset_size: 395702
- config_name: text
  features:
  - name: tokens
    sequence: string
  - name: novel
    dtype: string
  splits:
  - name: train
    num_bytes: 10400464
    num_examples: 7
  download_size: 2673188
  dataset_size: 10400464
configs:
- config_name: alias-resolution
  data_files:
  - split: train
    path: alias-resolution/train-*
- config_name: text
  data_files:
  - split: train
    path: text/train-*
---

# 7-romans

This dataset contains 7 French novels, entirely annoted for the alias resolution task. See the related [NER dataset](https://huggingface.co/datasets/compnet-renard/7-romans-ner).

| **Novel**               | **Author**        | **Publication Year**     | **Number of tokens** | **Number of characters**  |
|-------------------------|-------------------|--------------------------|----------------------|---------------------------|
| Les Trois Mousquetaires | Alexandre Dumas   | 1849                     | 294 989              | 213                       |
| Le Rouge et le Noir     | Stendhal          | 1854                     | 216 445              | 318                       |
| Eugénie Grandet         | Honoré de Balzac  | 1855                     | 80 659               | 107                       |
| Germinal                | Émile Zola        | 1885                     | 220 273              | 102                       |
| Bel-Ami                 | Guy de Maupassant | 1901                     | 138 156              | 150                       |
| Notre-Dame de Paris     | Victor Hugo       | 1904                     | 221 351              | 536                       |
| Madame Bovary           | Gustave Flaubert  | 1910                     | 148 861              | 175                       |


This gold standard corpus was created in the context of a project at the ObTIC laboratory, Sorbonne University. The project was directed by Motasem Alrahabi, and annnotations were performed by Perrine Maurel, Una Faller and Romaric Parnasse.

The corpus was then used to train a [CamemBERT NER model](https://huggingface.co/compnet-renard/camembert-base-literary-NER-v2) in collaboration with Arthur Amalvy and Vincent Labatut, from Avignon University.


# Usage

To load the alias resolution data:

```python
>>> from datasets import load_dataset
>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "alias-resolution")
>>> dataset["train"][0]
{'form': 'À la belle vue', 'type': 'LOC', 'mentions': 1, 'entity': '?', 'novel': 'BelAmi'}
```

Only the PER entities are annotated: other types only have a "?" in their entity field.


The novel texts themselves are in a separate configuration:

```python
>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "text")
>>> dataset["train"].features
{'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'novel': Value(dtype='string', id=None)}
```


# Citation

If you use this dataset in your research, please cite:

```bibtex
@InProceedings{Maurel2025,
  authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.},
  title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français},
  booktitle = {Digital Humanities 2025},
  year = {2025},
}
```