--- dataset_info: features: - name: id dtype: int64 - name: _priority dtype: float64 splits: - name: train num_bytes: 141371024 num_examples: 8835689 download_size: 64076411 dataset_size: 141371024 configs: - config_name: default data_files: - split: train path: data/train-* --- # dataproc5/tmp-danbooru2025-row-priorities The repo contains priority scores by id for tag blancing task, as part of the dataproc5 pipeline. ```python import unibox as ub from dataproc5.pipelines.danbooru.nodes import prepare_balancing_tags, select_balanced_images, prepare_row_priorities dbr_df = ub.loads("hf://trojblue/danbooru2025-metadata").to_pandas() tag_counts_all_df = ub.loads("hf://dataproc5/metrics-danbooru2025-alltime-tag-counts").to_pandas() tag_df = prepare_balancing_tags(dbr_df, tag_counts_all_df, key_col="id") dbr_df = dbr_df.merge(tag_df, on="id", how="left") priority_df = prepare_row_priorities(dbr_df, column_name="_priority", key_col="id") dbr_df = dbr_df.merge(priority_df, on="id", how="left") # Then you can sort by the new priority dbr_df.sort_values("_priority", ascending=False, inplace=True) ```