Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
ArXiv:
Tags:
code
Libraries:
Datasets
pandas
License:
gharshit412 commited on
Commit
a245956
·
1 Parent(s): c434d86

Track important_citations.csv with Git LFS

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ important_citations.csv filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -23,7 +23,7 @@ A comprehensive dataset of academic papers with extracted related works sections
23
 
24
  ## 📊 Dataset Overview
25
 
26
- This dataset contains **67 academic papers** from ArXiv with their related works sections and **1663 recovered citations**, providing a rich resource for research generation and citation analysis tasks.
27
 
28
  ### 🎯 Use Cases
29
 
@@ -35,10 +35,9 @@ This dataset contains **67 academic papers** from ArXiv with their related works
35
 
36
  ## 📁 Dataset Structure
37
 
38
- ### 1. `papers_with_related_works.csv` (67 papers)
39
 
40
  Contains academic papers with extracted related works sections in multiple formats:
41
-
42
  | Column | Description |
43
  |--------|-------------|
44
  | `arxiv_id` | ArXiv identifier (e.g., "2506.02838v1") |
@@ -50,11 +49,12 @@ Contains academic papers with extracted related works sections in multiple forma
50
  | `updated_date` | Last update date |
51
  | `abs_url` | ArXiv abstract URL |
52
  | `arxiv_link` | Full ArXiv link |
 
53
  | `raw_latex_related_works` | Raw LaTeX related works section |
54
  | `clean_latex_related_works` | Cleaned LaTeX related works section |
55
  | `pdf_related_works` | Related works extracted from PDF |
56
 
57
- ### 2. `citations_with_recovered_res.csv` (1663 citations)
58
 
59
  Contains individual citations with recovered metadata:
60
 
@@ -75,6 +75,7 @@ Contains individual citations with recovered metadata:
75
  | `bib_paper_url` | URL of the cited paper |
76
  | `bib_paper_doi` | DOI of the cited paper |
77
  | `bib_paper_journal` | Journal name |
 
78
  | `search_res_title` | Title from search results |
79
  | `search_res_url` | URL from search results |
80
  | `search_res_content` | Content snippet from search results |
 
23
 
24
  ## 📊 Dataset Overview
25
 
26
+ This dataset contains **63 academic papers** from ArXiv with their related works sections and **1630 recovered citations**, providing a rich resource for research generation and citation analysis tasks.
27
 
28
  ### 🎯 Use Cases
29
 
 
35
 
36
  ## 📁 Dataset Structure
37
 
38
+ ### 1. `papers_with_related_works.csv` (63 papers)
39
 
40
  Contains academic papers with extracted related works sections in multiple formats:
 
41
  | Column | Description |
42
  |--------|-------------|
43
  | `arxiv_id` | ArXiv identifier (e.g., "2506.02838v1") |
 
49
  | `updated_date` | Last update date |
50
  | `abs_url` | ArXiv abstract URL |
51
  | `arxiv_link` | Full ArXiv link |
52
+ | `publication_date` | Publication date |
53
  | `raw_latex_related_works` | Raw LaTeX related works section |
54
  | `clean_latex_related_works` | Cleaned LaTeX related works section |
55
  | `pdf_related_works` | Related works extracted from PDF |
56
 
57
+ ### 2. `recovered_citations.csv` (1630 citations)
58
 
59
  Contains individual citations with recovered metadata:
60
 
 
75
  | `bib_paper_url` | URL of the cited paper |
76
  | `bib_paper_doi` | DOI of the cited paper |
77
  | `bib_paper_journal` | Journal name |
78
+ | `original_title` | Original title from citation metadata |
79
  | `search_res_title` | Title from search results |
80
  | `search_res_url` | URL from search results |
81
  | `search_res_content` | Content snippet from search results |
important_citations.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb48008cdaa202abc4ed2e6689357f1858791b5fe0d586b33f9b447797114cf
3
+ size 16641640
lotus_deep_research.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Lotus Deep Research Dataset: Academic papers with extracted related works sections and recovered citations.
3
+
4
+ This dataset contains academic papers from ArXiv with their related works sections and recovered citations,
5
+ providing a rich resource for research generation and citation analysis tasks.
6
+ """
7
+
8
+ import csv
9
+ import datasets
10
+ from typing import Dict, List, Any, Optional
11
+
12
+
13
+ # Dataset URLs - these would typically point to hosted files
14
+ _DESCRIPTION = """\
15
+ A comprehensive dataset of academic papers with extracted related works sections and recovered citations,
16
+ designed for training and evaluating research generation systems.
17
+
18
+ This dataset contains 63 academic papers from ArXiv with their related works sections and 1630 recovered citations,
19
+ providing a rich resource for research generation and citation analysis tasks.
20
+ """
21
+
22
+ _CITATION = """\
23
+ @misc{patel2025deepscholarbenchlivebenchmarkautomated,
24
+ title={DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis},
25
+ author={Liana Patel and Negar Arabzadeh and Harshit Gupta and Ankita Sundar and Ion Stoica and Matei Zaharia and Carlos Guestrin},
26
+ year={2025},
27
+ eprint={2508.20033},
28
+ archivePrefix={arXiv},
29
+ primaryClass={cs.CL},
30
+ url={https://arxiv.org/abs/2508.20033},
31
+ }
32
+ """
33
+
34
+ _HOMEPAGE = "https://github.com/guestrin-lab/deepscholar-bench"
35
+ _LICENSE = "MIT"
36
+
37
+ # URLs to the dataset files
38
+ _URLS = {
39
+ "papers": "papers_with_related_works.csv",
40
+ "citations": "recovered_citations.csv",
41
+ "important_citations": "important_citations.csv",
42
+ }
43
+
44
+
45
+ class LotusDeepResearchConfig(datasets.BuilderConfig):
46
+ """BuilderConfig for LotusDeepResearch dataset."""
47
+
48
+ def __init__(self, name: str, description: str, **kwargs):
49
+ """BuilderConfig for LotusDeepResearch.
50
+
51
+ Args:
52
+ name: Configuration name
53
+ description: Description of this configuration
54
+ **kwargs: Additional keyword arguments
55
+ """
56
+ super(LotusDeepResearchConfig, self).__init__(
57
+ name=name,
58
+ description=description,
59
+ version=datasets.Version("1.0.0"),
60
+ **kwargs
61
+ )
62
+
63
+
64
+ class LotusDeepResearch(datasets.GeneratorBasedBuilder):
65
+ """Lotus Deep Research dataset."""
66
+
67
+ VERSION = datasets.Version("1.0.0")
68
+
69
+ BUILDER_CONFIGS = [
70
+ LotusDeepResearchConfig(
71
+ name="papers",
72
+ description="Academic papers with extracted related works sections (63 papers)",
73
+ ),
74
+ LotusDeepResearchConfig(
75
+ name="citations",
76
+ description="Recovered citations with metadata (1630 citations)",
77
+ ),
78
+ LotusDeepResearchConfig(
79
+ name="important_citations",
80
+ description="Important citations with metadata (1050 citations)",
81
+ ),
82
+ LotusDeepResearchConfig(
83
+ name="full",
84
+ description="Complete dataset with both papers and citations",
85
+ ),
86
+ ]
87
+
88
+ DEFAULT_CONFIG_NAME = "full"
89
+
90
+ def _info(self) -> datasets.DatasetInfo:
91
+ """Return the dataset info."""
92
+
93
+ if self.config.name == "papers":
94
+ features = datasets.Features({
95
+ "arxiv_id": datasets.Value("string"),
96
+ "title": datasets.Value("string"),
97
+ "authors": datasets.Value("string"),
98
+ "abstract": datasets.Value("string"),
99
+ "categories": datasets.Value("string"),
100
+ "published_date": datasets.Value("string"),
101
+ "updated_date": datasets.Value("string"),
102
+ "abs_url": datasets.Value("string"),
103
+ "arxiv_link": datasets.Value("string"),
104
+ "publication_date": datasets.Value("string"),
105
+ "raw_latex_related_works": datasets.Value("string"),
106
+ "clean_latex_related_works": datasets.Value("string"),
107
+ "pdf_related_works": datasets.Value("string"),
108
+ })
109
+ elif self.config.name == "citations":
110
+ features = datasets.Features({
111
+ "parent_paper_title": datasets.Value("string"),
112
+ "parent_paper_arxiv_id": datasets.Value("string"),
113
+ "citation_shorthand": datasets.Value("string"),
114
+ "raw_citation_text": datasets.Value("string"),
115
+ "cited_paper_title": datasets.Value("string"),
116
+ "cited_paper_arxiv_link": datasets.Value("string"),
117
+ "cited_paper_abstract": datasets.Value("string"),
118
+ "has_metadata": datasets.Value("bool"),
119
+ "is_arxiv_paper": datasets.Value("bool"),
120
+ "bib_paper_authors": datasets.Value("string"),
121
+ "bib_paper_year": datasets.Value("float32"),
122
+ "bib_paper_month": datasets.Value("string"),
123
+ "bib_paper_url": datasets.Value("string"),
124
+ "bib_paper_doi": datasets.Value("string"),
125
+ "bib_paper_journal": datasets.Value("string"),
126
+ "original_title": datasets.Value("string"),
127
+ "search_res_title": datasets.Value("string"),
128
+ "search_res_url": datasets.Value("string"),
129
+ "search_res_content": datasets.Value("string"),
130
+ })
131
+ elif self.config.name == "important_citations":
132
+ features = datasets.Features({
133
+ "parent_paper_title": datasets.Value("string"),
134
+ "parent_paper_arxiv_id": datasets.Value("string"),
135
+ "citation_shorthand": datasets.Value("string"),
136
+ "raw_citation_text": datasets.Value("string"),
137
+ "cited_paper_title": datasets.Value("string"),
138
+ "cited_paper_arxiv_link": datasets.Value("string"),
139
+ "cited_paper_abstract": datasets.Value("string"),
140
+ "has_metadata": datasets.Value("bool"),
141
+ "is_arxiv_paper": datasets.Value("bool"),
142
+ "cited_paper_authors": datasets.Value("string"),
143
+ "bib_paper_year": datasets.Value("float32"),
144
+ "bib_paper_month": datasets.Value("string"),
145
+ "bib_paper_url": datasets.Value("string"),
146
+ "bib_paper_doi": datasets.Value("string"),
147
+ "bib_paper_journal": datasets.Value("string"),
148
+ "original_title": datasets.Value("string"),
149
+ "search_res_title": datasets.Value("string"),
150
+ "search_res_url": datasets.Value("string"),
151
+ "search_res_content": datasets.Value("string"),
152
+ "arxiv_id": datasets.Value("string"),
153
+ "arxiv_link": datasets.Value("string"),
154
+ "publication_date": datasets.Value("string"),
155
+ "title": datasets.Value("string"),
156
+ "abstract": datasets.Value("string"),
157
+ "raw_latex_related_works": datasets.Value("string"),
158
+ "related_work_section": datasets.Value("string"),
159
+ "pdf_related_works": datasets.Value("string"),
160
+ "cited_paper_content": datasets.Value("string"),
161
+ })
162
+ else: # full config
163
+ features = datasets.Features({
164
+ # Papers features
165
+ "papers": datasets.Sequence({
166
+ "arxiv_id": datasets.Value("string"),
167
+ "title": datasets.Value("string"),
168
+ "authors": datasets.Value("string"),
169
+ "abstract": datasets.Value("string"),
170
+ "categories": datasets.Value("string"),
171
+ "published_date": datasets.Value("string"),
172
+ "updated_date": datasets.Value("string"),
173
+ "abs_url": datasets.Value("string"),
174
+ "arxiv_link": datasets.Value("string"),
175
+ "publication_date": datasets.Value("string"),
176
+ "raw_latex_related_works": datasets.Value("string"),
177
+ "clean_latex_related_works": datasets.Value("string"),
178
+ "pdf_related_works": datasets.Value("string"),
179
+ }),
180
+ # Citations features
181
+ "citations": datasets.Sequence({
182
+ "parent_paper_title": datasets.Value("string"),
183
+ "parent_paper_arxiv_id": datasets.Value("string"),
184
+ "citation_shorthand": datasets.Value("string"),
185
+ "raw_citation_text": datasets.Value("string"),
186
+ "cited_paper_title": datasets.Value("string"),
187
+ "cited_paper_arxiv_link": datasets.Value("string"),
188
+ "cited_paper_abstract": datasets.Value("string"),
189
+ "has_metadata": datasets.Value("bool"),
190
+ "is_arxiv_paper": datasets.Value("bool"),
191
+ "bib_paper_authors": datasets.Value("string"),
192
+ "bib_paper_year": datasets.Value("float32"),
193
+ "bib_paper_month": datasets.Value("string"),
194
+ "bib_paper_url": datasets.Value("string"),
195
+ "bib_paper_doi": datasets.Value("string"),
196
+ "bib_paper_journal": datasets.Value("string"),
197
+ "original_title": datasets.Value("string"),
198
+ "search_res_title": datasets.Value("string"),
199
+ "search_res_url": datasets.Value("string"),
200
+ "search_res_content": datasets.Value("string"),
201
+ }),
202
+ "important_citations": datasets.Sequence({
203
+ "parent_paper_title": datasets.Value("string"),
204
+ "parent_paper_arxiv_id": datasets.Value("string"),
205
+ "citation_shorthand": datasets.Value("string"),
206
+ "raw_citation_text": datasets.Value("string"),
207
+ "cited_paper_title": datasets.Value("string"),
208
+ "cited_paper_arxiv_link": datasets.Value("string"),
209
+ "cited_paper_abstract": datasets.Value("string"),
210
+ "has_metadata": datasets.Value("bool"),
211
+ "is_arxiv_paper": datasets.Value("bool"),
212
+ "cited_paper_authors": datasets.Value("string"),
213
+ "bib_paper_year": datasets.Value("float32"),
214
+ "bib_paper_month": datasets.Value("string"),
215
+ "bib_paper_url": datasets.Value("string"),
216
+ "bib_paper_doi": datasets.Value("string"),
217
+ "bib_paper_journal": datasets.Value("string"),
218
+ "original_title": datasets.Value("string"),
219
+ "search_res_title": datasets.Value("string"),
220
+ "search_res_url": datasets.Value("string"),
221
+ "search_res_content": datasets.Value("string"),
222
+ "arxiv_id": datasets.Value("string"),
223
+ "arxiv_link": datasets.Value("string"),
224
+ "publication_date": datasets.Value("string"),
225
+ "title": datasets.Value("string"),
226
+ "abstract": datasets.Value("string"),
227
+ "raw_latex_related_works": datasets.Value("string"),
228
+ "related_work_section": datasets.Value("string"),
229
+ "pdf_related_works": datasets.Value("string"),
230
+ "cited_paper_content": datasets.Value("string"),
231
+ })
232
+ })
233
+
234
+ return datasets.DatasetInfo(
235
+ description=_DESCRIPTION,
236
+ features=features,
237
+ homepage=_HOMEPAGE,
238
+ license=_LICENSE,
239
+ citation=_CITATION,
240
+ )
241
+
242
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
243
+ """Return the dataset splits."""
244
+
245
+ # For local files, use the actual file paths
246
+ import os
247
+ current_dir = os.path.dirname(os.path.abspath(__file__))
248
+
249
+ if self.config.name == "papers":
250
+ data_file = os.path.join(current_dir, "papers_with_related_works.csv")
251
+ return [
252
+ datasets.SplitGenerator(
253
+ name=datasets.Split.TRAIN,
254
+ gen_kwargs={
255
+ "filepath": data_file,
256
+ "split": "papers"
257
+ },
258
+ ),
259
+ ]
260
+ elif self.config.name == "citations":
261
+ data_file = os.path.join(current_dir, "recovered_citations.csv")
262
+ return [
263
+ datasets.SplitGenerator(
264
+ name=datasets.Split.TRAIN,
265
+ gen_kwargs={
266
+ "filepath": data_file,
267
+ "split": "citations"
268
+ },
269
+ ),
270
+ ]
271
+ elif self.config.name == "important_citations":
272
+ data_file = os.path.join(current_dir, "important_citations.csv")
273
+ return [
274
+ datasets.SplitGenerator(
275
+ name=datasets.Split.TRAIN,
276
+ gen_kwargs={
277
+ "filepath": data_file,
278
+ "split": "important_citations"
279
+ },
280
+ ),
281
+ ]
282
+ else: # full config
283
+ papers_file = os.path.join(current_dir, "papers_with_related_works.csv")
284
+ citations_file = os.path.join(current_dir, "recovered_citations.csv")
285
+ important_citations_file = os.path.join(current_dir, "important_citations.csv")
286
+ return [
287
+ datasets.SplitGenerator(
288
+ name="papers",
289
+ gen_kwargs={
290
+ "filepath": papers_file,
291
+ "split": "papers"
292
+ },
293
+ ),
294
+ datasets.SplitGenerator(
295
+ name="citations",
296
+ gen_kwargs={
297
+ "filepath": citations_file,
298
+ "split": "citations"
299
+ },
300
+ ),
301
+ datasets.SplitGenerator(
302
+ name="important_citations",
303
+ gen_kwargs={
304
+ "filepath": important_citations_file,
305
+ "split": "important_citations"
306
+ },
307
+ ),
308
+ ]
309
+
310
+ def _generate_examples(self, filepath: str, split: str):
311
+ """Generate examples from the dataset."""
312
+
313
+ def _safe_bool_convert(value: str) -> bool:
314
+ """Safely convert string to boolean."""
315
+ if isinstance(value, str):
316
+ return value.lower() in ('true', 'yes', '1')
317
+ return bool(value)
318
+
319
+ def _safe_float_convert(value: str) -> Optional[float]:
320
+ """Safely convert string to float."""
321
+ if not value or value.strip() == '' or value.lower() == 'nan':
322
+ return None
323
+ try:
324
+ return float(value)
325
+ except (ValueError, TypeError):
326
+ return None
327
+
328
+ if split == "papers":
329
+ with open(filepath, encoding="utf-8") as f:
330
+ reader = csv.DictReader(f)
331
+ for key, row in enumerate(reader):
332
+ yield key, {
333
+ "arxiv_id": row.get("arxiv_id", ""),
334
+ "title": row.get("title", ""),
335
+ "authors": row.get("authors", ""),
336
+ "abstract": row.get("abstract", ""),
337
+ "categories": row.get("categories", ""),
338
+ "published_date": row.get("published_date", ""),
339
+ "updated_date": row.get("updated_date", ""),
340
+ "abs_url": row.get("abs_url", ""),
341
+ "arxiv_link": row.get("arxiv_link", ""),
342
+ "publication_date": row.get("publication_date", ""),
343
+ "raw_latex_related_works": row.get("raw_latex_related_works", ""),
344
+ "clean_latex_related_works": row.get("clean_latex_related_works", ""),
345
+ "pdf_related_works": row.get("pdf_related_works", ""),
346
+ }
347
+
348
+ elif split == "citations":
349
+ with open(filepath, encoding="utf-8") as f:
350
+ reader = csv.DictReader(f)
351
+ for key, row in enumerate(reader):
352
+ yield key, {
353
+ "parent_paper_title": row.get("parent_paper_title", ""),
354
+ "parent_paper_arxiv_id": row.get("parent_paper_arxiv_id", ""),
355
+ "citation_shorthand": row.get("citation_shorthand", ""),
356
+ "raw_citation_text": row.get("raw_citation_text", ""),
357
+ "cited_paper_title": row.get("cited_paper_title", ""),
358
+ "cited_paper_arxiv_link": row.get("cited_paper_arxiv_link", ""),
359
+ "cited_paper_abstract": row.get("cited_paper_abstract", ""),
360
+ "has_metadata": _safe_bool_convert(row.get("has_metadata", "False")),
361
+ "is_arxiv_paper": _safe_bool_convert(row.get("is_arxiv_paper", "False")),
362
+ "bib_paper_authors": row.get("bib_paper_authors", ""),
363
+ "bib_paper_year": _safe_float_convert(row.get("bib_paper_year", "")),
364
+ "bib_paper_month": row.get("bib_paper_month", ""),
365
+ "bib_paper_url": row.get("bib_paper_url", ""),
366
+ "bib_paper_doi": row.get("bib_paper_doi", ""),
367
+ "bib_paper_journal": row.get("bib_paper_journal", ""),
368
+ "original_title": row.get("original_title", ""),
369
+ "search_res_title": row.get("search_res_title", ""),
370
+ "search_res_url": row.get("search_res_url", ""),
371
+ "search_res_content": row.get("search_res_content", ""),
372
+ }
373
+ elif split == "important_citations":
374
+ with open(filepath, encoding="utf-8") as f:
375
+ reader = csv.DictReader(f)
376
+ for key, row in enumerate(reader):
377
+ yield key, {
378
+ "parent_paper_title": row.get("parent_paper_title", ""),
379
+ "parent_paper_arxiv_id": row.get("parent_paper_arxiv_id", ""),
380
+ "citation_shorthand": row.get("citation_shorthand", ""),
381
+ "raw_citation_text": row.get("raw_citation_text", ""),
382
+ "cited_paper_title": row.get("cited_paper_title", ""),
383
+ "cited_paper_arxiv_link": row.get("cited_paper_arxiv_link", ""),
384
+ "cited_paper_abstract": row.get("cited_paper_abstract", ""),
385
+ "has_metadata": _safe_bool_convert(row.get("has_metadata", "False")),
386
+ "is_arxiv_paper": _safe_bool_convert(row.get("is_arxiv_paper", "False")),
387
+ "bib_paper_authors": row.get("bib_paper_authors", ""),
388
+ "bib_paper_year": _safe_float_convert(row.get("bib_paper_year", "")),
389
+ "bib_paper_month": row.get("bib_paper_month", ""),
390
+ "bib_paper_url": row.get("bib_paper_url", ""),
391
+ "bib_paper_doi": row.get("bib_paper_doi", ""),
392
+ "bib_paper_journal": row.get("bib_paper_journal", ""),
393
+ "original_title": row.get("original_title", ""),
394
+ "search_res_title": row.get("search_res_title", ""),
395
+ "search_res_url": row.get("search_res_url", ""),
396
+ "search_res_content": row.get("search_res_content", ""),
397
+ }
papers.csv DELETED
The diff for this file is too large to render. See raw diff
 
papers_with_related_works.csv ADDED
The diff for this file is too large to render. See raw diff
 
usage_example.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Usage example for the Lotus Deep Research dataset.
4
+
5
+ This shows how to use the dataset builder directly, which is the recommended approach
6
+ for local development and testing.
7
+ """
8
+
9
+ import sys
10
+ import os
11
+ from pathlib import Path
12
+
13
+ # Add the current directory to Python path
14
+ sys.path.insert(0, str(Path(__file__).parent))
15
+
16
+ from lotus_deep_research import LotusDeepResearch
17
+ import pandas as pd
18
+
19
+
20
+ def load_papers_dataset():
21
+ """Load the papers dataset."""
22
+ print("Loading papers dataset...")
23
+
24
+ # Create dataset builder
25
+ builder = LotusDeepResearch(config_name="papers")
26
+
27
+ # Mock download manager for local files
28
+ class MockDownloadManager:
29
+ def download_and_extract(self, url_or_path):
30
+ return url_or_path
31
+
32
+ dl_manager = MockDownloadManager()
33
+
34
+ # Get split generators and load data
35
+ split_generators = builder._split_generators(dl_manager)
36
+ split_gen = split_generators[0] # Get train split
37
+
38
+ # Collect all examples
39
+ papers_data = []
40
+ for key, example in builder._generate_examples(
41
+ split_gen.gen_kwargs["filepath"],
42
+ split_gen.gen_kwargs["split"]
43
+ ):
44
+ papers_data.append(example)
45
+
46
+ print(f"Loaded {len(papers_data)} papers")
47
+ return papers_data
48
+
49
+
50
+ def load_citations_dataset():
51
+ """Load the citations dataset."""
52
+ print("Loading citations dataset...")
53
+
54
+ # Create dataset builder
55
+ builder = LotusDeepResearch(config_name="citations")
56
+
57
+ # Mock download manager for local files
58
+ class MockDownloadManager:
59
+ def download_and_extract(self, url_or_path):
60
+ return url_or_path
61
+
62
+ dl_manager = MockDownloadManager()
63
+
64
+ # Get split generators and load data
65
+ split_generators = builder._split_generators(dl_manager)
66
+ split_gen = split_generators[0] # Get train split
67
+
68
+ # Collect all examples
69
+ citations_data = []
70
+ for key, example in builder._generate_examples(
71
+ split_gen.gen_kwargs["filepath"],
72
+ split_gen.gen_kwargs["split"]
73
+ ):
74
+ citations_data.append(example)
75
+
76
+ print(f"Loaded {len(citations_data)} citations")
77
+ return citations_data
78
+
79
+
80
+ def load_important_citations_dataset():
81
+ """Load the important citations dataset."""
82
+ print("Loading important citations dataset...")
83
+
84
+ # Create dataset builder
85
+ builder = LotusDeepResearch(config_name="important_citations")
86
+
87
+ # Mock download manager for local files
88
+ class MockDownloadManager:
89
+ def download_and_extract(self, url_or_path):
90
+ return url_or_path
91
+
92
+ dl_manager = MockDownloadManager()
93
+
94
+ # Get split generators and load data
95
+ split_generators = builder._split_generators(dl_manager)
96
+ split_gen = split_generators[0] # Get train split
97
+
98
+ # Collect all examples
99
+ important_citations_data = []
100
+ for key, example in builder._generate_examples(
101
+ split_gen.gen_kwargs["filepath"],
102
+ split_gen.gen_kwargs["split"]
103
+ ):
104
+ important_citations_data.append(example)
105
+
106
+ print(f"Loaded {len(important_citations_data)} important citations")
107
+ return important_citations_data
108
+
109
+
110
+ def main():
111
+ """Main example function."""
112
+ print("Lotus Deep Research Dataset - Usage Example")
113
+ print("=" * 50)
114
+
115
+ # Load datasets
116
+ papers = load_papers_dataset()
117
+ citations = load_citations_dataset()
118
+ important_citations = load_important_citations_dataset()
119
+
120
+ print("\n📊 Dataset Statistics:")
121
+ print(f" - Papers: {len(papers)}")
122
+ print(f" - Citations: {len(citations)}")
123
+ print(f" - Important Citations: {len(important_citations)}")
124
+
125
+ # Show sample paper
126
+ if papers:
127
+ sample_paper = papers[0]
128
+ print(f"\n📄 Sample Paper:")
129
+ print(f" - Title: {sample_paper['title']}")
130
+ print(f" - ArXiv ID: {sample_paper['arxiv_id']}")
131
+ print(f" - Authors: {sample_paper['authors'][:100]}...")
132
+ print(f" - Abstract: {sample_paper['abstract'][:200]}...")
133
+
134
+ # Show sample citation
135
+ if citations:
136
+ sample_citation = citations[0]
137
+ print(f"\n📚 Sample Citation:")
138
+ print(f" - Parent Paper: {sample_citation['parent_paper_title']}")
139
+ print(f" - Cited Paper: {sample_citation['cited_paper_title']}")
140
+ print(f" - Has Metadata: {sample_citation['has_metadata']}")
141
+ print(f" - Is ArXiv Paper: {sample_citation['is_arxiv_paper']}")
142
+
143
+ # Show sample important citation
144
+ if important_citations:
145
+ sample_important_citation = important_citations[0]
146
+ print(f"\n⭐ Sample Important Citation:")
147
+ print(f" - Parent Paper: {sample_important_citation['parent_paper_title']}")
148
+ print(f" - Cited Paper: {sample_important_citation['cited_paper_title']}")
149
+ print(f" - Has Metadata: {sample_important_citation['has_metadata']}")
150
+ print(f" - Is ArXiv Paper: {sample_important_citation['is_arxiv_paper']}")
151
+
152
+ # Convert to pandas for easier analysis
153
+ print(f"\n🐼 Converting to Pandas DataFrames...")
154
+ papers_df = pd.DataFrame(papers)
155
+ citations_df = pd.DataFrame(citations)
156
+ important_citations_df = pd.DataFrame(important_citations)
157
+
158
+ print(f" - Papers DataFrame: {papers_df.shape}")
159
+ print(f" - Citations DataFrame: {citations_df.shape}")
160
+ print(f" - Important Citations DataFrame: {important_citations_df.shape}")
161
+
162
+ # Show some analysis
163
+ print(f"\n📈 Quick Analysis:")
164
+ print(f" - Unique parent papers in citations: {citations_df['parent_paper_arxiv_id'].nunique()}")
165
+ print(f" - Citations with metadata: {citations_df['has_metadata'].sum()}")
166
+ print(f" - ArXiv citations: {citations_df['is_arxiv_paper'].sum()}")
167
+ print(f" - Unique parent papers in important citations: {important_citations_df['parent_paper_arxiv_id'].nunique()}")
168
+ print(f" - Important citations with metadata: {important_citations_df['has_metadata'].sum()}")
169
+ print(f" - ArXiv important citations: {important_citations_df['is_arxiv_paper'].sum()}")
170
+
171
+ return papers_df, citations_df, important_citations_df
172
+
173
+
174
+ if __name__ == "__main__":
175
+ papers_df, citations_df, important_citations_df = main()