|
import PIL |
|
import torch |
|
from datasets import Dataset, Features |
|
from datasets import Image as ImageFeature |
|
from datasets import Value, load_dataset |
|
|
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
def main(): |
|
print("Loading dataset...") |
|
parti_prompts = load_dataset("nateraw/parti-prompts", split="train") |
|
|
|
print("Loading pipeline...") |
|
pipe_prior = DiffusionPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 |
|
) |
|
pipe_prior.to("cuda") |
|
pipe_prior.set_progress_bar_config(disable=True) |
|
|
|
t2i_pipe = DiffusionPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 |
|
) |
|
t2i_pipe.to("cuda") |
|
t2i_pipe.set_progress_bar_config(disable=True) |
|
|
|
seed = 0 |
|
generator = torch.Generator("cuda").manual_seed(seed) |
|
ckpt_id = ( |
|
"kandinsky-community/" + "kandinsky-2-2-prior" + "_" + "kandinsky-2-2-decoder" |
|
) |
|
|
|
print("Running inference...") |
|
main_dict = {} |
|
for i in range(len(parti_prompts)): |
|
sample = parti_prompts[i] |
|
prompt = sample["Prompt"] |
|
|
|
image_embeds, negative_image_embeds = pipe_prior( |
|
prompt, |
|
generator=generator, |
|
num_inference_steps=100, |
|
guidance_scale=7.5, |
|
).to_tuple() |
|
image = t2i_pipe( |
|
image_embeds=image_embeds, |
|
negative_image_embeds=negative_image_embeds, |
|
generator=generator, |
|
num_inference_steps=100, |
|
guidance_scale=7.5, |
|
).images[0] |
|
|
|
image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) |
|
img_path = f"kandinsky_22_{i}.png" |
|
image.save(img_path) |
|
main_dict.update( |
|
{ |
|
prompt: { |
|
"img_path": img_path, |
|
"Category": sample["Category"], |
|
"Challenge": sample["Challenge"], |
|
"Note": sample["Note"], |
|
"model_name": ckpt_id, |
|
"seed": seed, |
|
} |
|
} |
|
) |
|
|
|
def generation_fn(): |
|
for prompt in main_dict: |
|
prompt_entry = main_dict[prompt] |
|
yield { |
|
"Prompt": prompt, |
|
"Category": prompt_entry["Category"], |
|
"Challenge": prompt_entry["Challenge"], |
|
"Note": prompt_entry["Note"], |
|
"images": {"path": prompt_entry["img_path"]}, |
|
"model_name": prompt_entry["model_name"], |
|
"seed": prompt_entry["seed"], |
|
} |
|
|
|
print("Preparing HF dataset...") |
|
ds = Dataset.from_generator( |
|
generation_fn, |
|
features=Features( |
|
Prompt=Value("string"), |
|
Category=Value("string"), |
|
Challenge=Value("string"), |
|
Note=Value("string"), |
|
images=ImageFeature(), |
|
model_name=Value("string"), |
|
seed=Value("int64"), |
|
), |
|
) |
|
ds_id = "diffusers-parti-prompts/kandinsky-2-2" |
|
ds.push_to_hub(ds_id) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|