Upload folder using huggingface_hub
Browse files
main/img2img_inpainting.py
CHANGED
|
@@ -45,7 +45,7 @@ def check_size(image, height, width):
|
|
| 45 |
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
|
| 46 |
|
| 47 |
|
| 48 |
-
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)):
|
| 49 |
inner_image = inner_image.convert("RGBA")
|
| 50 |
image = image.convert("RGB")
|
| 51 |
|
|
|
|
| 45 |
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
|
| 46 |
|
| 47 |
|
| 48 |
+
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int, ...] = (0, 0)):
|
| 49 |
inner_image = inner_image.convert("RGBA")
|
| 50 |
image = image.convert("RGB")
|
| 51 |
|
main/matryoshka.py
CHANGED
|
@@ -1966,16 +1966,21 @@ class MatryoshkaUNet2DConditionModel(
|
|
| 1966 |
center_input_sample: bool = False,
|
| 1967 |
flip_sin_to_cos: bool = True,
|
| 1968 |
freq_shift: int = 0,
|
| 1969 |
-
down_block_types: Tuple[str] = (
|
| 1970 |
"CrossAttnDownBlock2D",
|
| 1971 |
"CrossAttnDownBlock2D",
|
| 1972 |
"CrossAttnDownBlock2D",
|
| 1973 |
"DownBlock2D",
|
| 1974 |
),
|
| 1975 |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 1976 |
-
up_block_types: Tuple[str] = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1977 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 1978 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 1979 |
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 1980 |
downsample_padding: int = 1,
|
| 1981 |
mid_block_scale_factor: float = 1,
|
|
@@ -2294,10 +2299,10 @@ class MatryoshkaUNet2DConditionModel(
|
|
| 2294 |
|
| 2295 |
def _check_config(
|
| 2296 |
self,
|
| 2297 |
-
down_block_types: Tuple[str],
|
| 2298 |
-
up_block_types: Tuple[str],
|
| 2299 |
only_cross_attention: Union[bool, Tuple[bool]],
|
| 2300 |
-
block_out_channels: Tuple[int],
|
| 2301 |
layers_per_block: Union[int, Tuple[int]],
|
| 2302 |
cross_attention_dim: Union[int, Tuple[int]],
|
| 2303 |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
|
|
|
| 1966 |
center_input_sample: bool = False,
|
| 1967 |
flip_sin_to_cos: bool = True,
|
| 1968 |
freq_shift: int = 0,
|
| 1969 |
+
down_block_types: Tuple[str, ...] = (
|
| 1970 |
"CrossAttnDownBlock2D",
|
| 1971 |
"CrossAttnDownBlock2D",
|
| 1972 |
"CrossAttnDownBlock2D",
|
| 1973 |
"DownBlock2D",
|
| 1974 |
),
|
| 1975 |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 1976 |
+
up_block_types: Tuple[str, ...] = (
|
| 1977 |
+
"UpBlock2D",
|
| 1978 |
+
"CrossAttnUpBlock2D",
|
| 1979 |
+
"CrossAttnUpBlock2D",
|
| 1980 |
+
"CrossAttnUpBlock2D",
|
| 1981 |
+
),
|
| 1982 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 1983 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 1984 |
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 1985 |
downsample_padding: int = 1,
|
| 1986 |
mid_block_scale_factor: float = 1,
|
|
|
|
| 2299 |
|
| 2300 |
def _check_config(
|
| 2301 |
self,
|
| 2302 |
+
down_block_types: Tuple[str, ...],
|
| 2303 |
+
up_block_types: Tuple[str, ...],
|
| 2304 |
only_cross_attention: Union[bool, Tuple[bool]],
|
| 2305 |
+
block_out_channels: Tuple[int, ...],
|
| 2306 |
layers_per_block: Union[int, Tuple[int]],
|
| 2307 |
cross_attention_dim: Union[int, Tuple[int]],
|
| 2308 |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
main/pipeline_faithdiff_stable_diffusion_xl.py
CHANGED
|
@@ -438,16 +438,21 @@ class UNet2DConditionModel(OriginalUNet2DConditionModel, ConfigMixin, UNet2DCond
|
|
| 438 |
center_input_sample: bool = False,
|
| 439 |
flip_sin_to_cos: bool = True,
|
| 440 |
freq_shift: int = 0,
|
| 441 |
-
down_block_types: Tuple[str] = (
|
| 442 |
"CrossAttnDownBlock2D",
|
| 443 |
"CrossAttnDownBlock2D",
|
| 444 |
"CrossAttnDownBlock2D",
|
| 445 |
"DownBlock2D",
|
| 446 |
),
|
| 447 |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 448 |
-
up_block_types: Tuple[str] = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 450 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 451 |
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 452 |
downsample_padding: int = 1,
|
| 453 |
mid_block_scale_factor: float = 1,
|
|
|
|
| 438 |
center_input_sample: bool = False,
|
| 439 |
flip_sin_to_cos: bool = True,
|
| 440 |
freq_shift: int = 0,
|
| 441 |
+
down_block_types: Tuple[str, ...] = (
|
| 442 |
"CrossAttnDownBlock2D",
|
| 443 |
"CrossAttnDownBlock2D",
|
| 444 |
"CrossAttnDownBlock2D",
|
| 445 |
"DownBlock2D",
|
| 446 |
),
|
| 447 |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 448 |
+
up_block_types: Tuple[str, ...] = (
|
| 449 |
+
"UpBlock2D",
|
| 450 |
+
"CrossAttnUpBlock2D",
|
| 451 |
+
"CrossAttnUpBlock2D",
|
| 452 |
+
"CrossAttnUpBlock2D",
|
| 453 |
+
),
|
| 454 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 455 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 456 |
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 457 |
downsample_padding: int = 1,
|
| 458 |
mid_block_scale_factor: float = 1,
|