Upload folder using huggingface_hub
Browse files
main/regional_prompting_stable_diffusion.py
CHANGED
|
@@ -1,14 +1,43 @@
|
|
|
|
|
| 1 |
import math
|
| 2 |
-
from typing import Dict, Optional
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import torchvision.transforms.functional as FF
|
| 6 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 7 |
|
| 8 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
| 10 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 11 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
try:
|
|
@@ -21,7 +50,14 @@ KCOMM = "ADDCOMM"
|
|
| 21 |
KBRK = "BREAK"
|
| 22 |
|
| 23 |
|
| 24 |
-
class RegionalPromptingStableDiffusionPipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
r"""
|
| 26 |
Args for Regional Prompting Pipeline:
|
| 27 |
rp_args:dict
|
|
@@ -78,17 +114,7 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 78 |
image_encoder: CLIPVisionModelWithProjection = None,
|
| 79 |
requires_safety_checker: bool = True,
|
| 80 |
):
|
| 81 |
-
super().__init__(
|
| 82 |
-
vae,
|
| 83 |
-
text_encoder,
|
| 84 |
-
tokenizer,
|
| 85 |
-
unet,
|
| 86 |
-
scheduler,
|
| 87 |
-
safety_checker,
|
| 88 |
-
feature_extractor,
|
| 89 |
-
image_encoder,
|
| 90 |
-
requires_safety_checker,
|
| 91 |
-
)
|
| 92 |
self.register_modules(
|
| 93 |
vae=vae,
|
| 94 |
text_encoder=text_encoder,
|
|
@@ -99,6 +125,17 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 99 |
feature_extractor=feature_extractor,
|
| 100 |
image_encoder=image_encoder,
|
| 101 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
@torch.no_grad()
|
| 104 |
def __call__(
|
|
@@ -413,7 +450,7 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 413 |
|
| 414 |
hook_forwards(self.unet)
|
| 415 |
|
| 416 |
-
output =
|
| 417 |
prompt=prompt,
|
| 418 |
prompt_embeds=embs,
|
| 419 |
negative_prompt=negative_prompt,
|
|
@@ -449,6 +486,909 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 449 |
|
| 450 |
return output
|
| 451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
|
| 453 |
### Make prompt list for each regions
|
| 454 |
def promptsmaker(prompts, batch):
|
|
@@ -663,3 +1603,88 @@ def scaled_dot_product_attention(
|
|
| 663 |
get_attn_maps(self, attn_weight)
|
| 664 |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
| 665 |
return attn_weight @ value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
import math
|
| 3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import torchvision.transforms.functional as FF
|
| 7 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 8 |
|
| 9 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 10 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 11 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin
|
| 12 |
+
from diffusers.loaders.ip_adapter import IPAdapterMixin
|
| 13 |
+
from diffusers.loaders.lora_pipeline import LoraLoaderMixin
|
| 14 |
+
from diffusers.loaders.single_file import FromSingleFileMixin
|
| 15 |
+
from diffusers.loaders.textual_inversion import TextualInversionLoaderMixin
|
| 16 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 17 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 18 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 19 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
| 20 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 21 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 22 |
+
from diffusers.utils import (
|
| 23 |
+
USE_PEFT_BACKEND,
|
| 24 |
+
deprecate,
|
| 25 |
+
is_torch_xla_available,
|
| 26 |
+
logging,
|
| 27 |
+
scale_lora_layers,
|
| 28 |
+
unscale_lora_layers,
|
| 29 |
+
)
|
| 30 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
if is_torch_xla_available():
|
| 36 |
+
import torch_xla.core.xla_model as xm
|
| 37 |
+
|
| 38 |
+
XLA_AVAILABLE = True
|
| 39 |
+
else:
|
| 40 |
+
XLA_AVAILABLE = False
|
| 41 |
|
| 42 |
|
| 43 |
try:
|
|
|
|
| 50 |
KBRK = "BREAK"
|
| 51 |
|
| 52 |
|
| 53 |
+
class RegionalPromptingStableDiffusionPipeline(
|
| 54 |
+
DiffusionPipeline,
|
| 55 |
+
TextualInversionLoaderMixin,
|
| 56 |
+
LoraLoaderMixin,
|
| 57 |
+
IPAdapterMixin,
|
| 58 |
+
FromSingleFileMixin,
|
| 59 |
+
StableDiffusionLoraLoaderMixin,
|
| 60 |
+
):
|
| 61 |
r"""
|
| 62 |
Args for Regional Prompting Pipeline:
|
| 63 |
rp_args:dict
|
|
|
|
| 114 |
image_encoder: CLIPVisionModelWithProjection = None,
|
| 115 |
requires_safety_checker: bool = True,
|
| 116 |
):
|
| 117 |
+
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
self.register_modules(
|
| 119 |
vae=vae,
|
| 120 |
text_encoder=text_encoder,
|
|
|
|
| 125 |
feature_extractor=feature_extractor,
|
| 126 |
image_encoder=image_encoder,
|
| 127 |
)
|
| 128 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 129 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 130 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 131 |
+
|
| 132 |
+
# Initialize additional properties needed for DiffusionPipeline
|
| 133 |
+
self._num_timesteps = None
|
| 134 |
+
self._interrupt = False
|
| 135 |
+
self._guidance_scale = 7.5
|
| 136 |
+
self._guidance_rescale = 0.0
|
| 137 |
+
self._clip_skip = None
|
| 138 |
+
self._cross_attention_kwargs = None
|
| 139 |
|
| 140 |
@torch.no_grad()
|
| 141 |
def __call__(
|
|
|
|
| 450 |
|
| 451 |
hook_forwards(self.unet)
|
| 452 |
|
| 453 |
+
output = self.stable_diffusion_call(
|
| 454 |
prompt=prompt,
|
| 455 |
prompt_embeds=embs,
|
| 456 |
negative_prompt=negative_prompt,
|
|
|
|
| 486 |
|
| 487 |
return output
|
| 488 |
|
| 489 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 490 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 491 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 492 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 493 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 494 |
+
# and should be between [0, 1]
|
| 495 |
+
|
| 496 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 497 |
+
extra_step_kwargs = {}
|
| 498 |
+
if accepts_eta:
|
| 499 |
+
extra_step_kwargs["eta"] = eta
|
| 500 |
+
|
| 501 |
+
# check if the scheduler accepts generator
|
| 502 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 503 |
+
if accepts_generator:
|
| 504 |
+
extra_step_kwargs["generator"] = generator
|
| 505 |
+
return extra_step_kwargs
|
| 506 |
+
|
| 507 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 508 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 509 |
+
shape = (
|
| 510 |
+
batch_size,
|
| 511 |
+
num_channels_latents,
|
| 512 |
+
int(height) // self.vae_scale_factor,
|
| 513 |
+
int(width) // self.vae_scale_factor,
|
| 514 |
+
)
|
| 515 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 516 |
+
raise ValueError(
|
| 517 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 518 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
if latents is None:
|
| 522 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 523 |
+
else:
|
| 524 |
+
latents = latents.to(device)
|
| 525 |
+
|
| 526 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 527 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 528 |
+
return latents
|
| 529 |
+
|
| 530 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 531 |
+
def encode_prompt(
|
| 532 |
+
self,
|
| 533 |
+
prompt,
|
| 534 |
+
device,
|
| 535 |
+
num_images_per_prompt,
|
| 536 |
+
do_classifier_free_guidance,
|
| 537 |
+
negative_prompt=None,
|
| 538 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 539 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 540 |
+
lora_scale: Optional[float] = None,
|
| 541 |
+
clip_skip: Optional[int] = None,
|
| 542 |
+
):
|
| 543 |
+
r"""
|
| 544 |
+
Encodes the prompt into text encoder hidden states.
|
| 545 |
+
|
| 546 |
+
Args:
|
| 547 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 548 |
+
prompt to be encoded
|
| 549 |
+
device: (`torch.device`):
|
| 550 |
+
torch device
|
| 551 |
+
num_images_per_prompt (`int`):
|
| 552 |
+
number of images that should be generated per prompt
|
| 553 |
+
do_classifier_free_guidance (`bool`):
|
| 554 |
+
whether to use classifier free guidance or not
|
| 555 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 556 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 557 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 558 |
+
less than `1`).
|
| 559 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 560 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 561 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 562 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 563 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 564 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 565 |
+
argument.
|
| 566 |
+
lora_scale (`float`, *optional*):
|
| 567 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 568 |
+
clip_skip (`int`, *optional*):
|
| 569 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 570 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 571 |
+
"""
|
| 572 |
+
# set lora scale so that monkey patched LoRA
|
| 573 |
+
# function of text encoder can correctly access it
|
| 574 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 575 |
+
self._lora_scale = lora_scale
|
| 576 |
+
|
| 577 |
+
# dynamically adjust the LoRA scale
|
| 578 |
+
if not USE_PEFT_BACKEND:
|
| 579 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
| 580 |
+
else:
|
| 581 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 582 |
+
|
| 583 |
+
if prompt is not None and isinstance(prompt, str):
|
| 584 |
+
batch_size = 1
|
| 585 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 586 |
+
batch_size = len(prompt)
|
| 587 |
+
else:
|
| 588 |
+
batch_size = prompt_embeds.shape[0]
|
| 589 |
+
|
| 590 |
+
if prompt_embeds is None:
|
| 591 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 592 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 593 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
| 594 |
+
|
| 595 |
+
text_inputs = self.tokenizer(
|
| 596 |
+
prompt,
|
| 597 |
+
padding="max_length",
|
| 598 |
+
max_length=self.tokenizer.model_max_length,
|
| 599 |
+
truncation=True,
|
| 600 |
+
return_tensors="pt",
|
| 601 |
+
)
|
| 602 |
+
text_input_ids = text_inputs.input_ids
|
| 603 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 604 |
+
|
| 605 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 606 |
+
text_input_ids, untruncated_ids
|
| 607 |
+
):
|
| 608 |
+
removed_text = self.tokenizer.batch_decode(
|
| 609 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 610 |
+
)
|
| 611 |
+
logger.warning(
|
| 612 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 613 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 617 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 618 |
+
else:
|
| 619 |
+
attention_mask = None
|
| 620 |
+
|
| 621 |
+
if clip_skip is None:
|
| 622 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
| 623 |
+
prompt_embeds = prompt_embeds[0]
|
| 624 |
+
else:
|
| 625 |
+
prompt_embeds = self.text_encoder(
|
| 626 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
| 627 |
+
)
|
| 628 |
+
# Access the `hidden_states` first, that contains a tuple of
|
| 629 |
+
# all the hidden states from the encoder layers. Then index into
|
| 630 |
+
# the tuple to access the hidden states from the desired layer.
|
| 631 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
| 632 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
| 633 |
+
# representations. The `last_hidden_states` that we typically use for
|
| 634 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
| 635 |
+
# layer.
|
| 636 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
| 637 |
+
|
| 638 |
+
if self.text_encoder is not None:
|
| 639 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
| 640 |
+
elif self.unet is not None:
|
| 641 |
+
prompt_embeds_dtype = self.unet.dtype
|
| 642 |
+
else:
|
| 643 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
| 644 |
+
|
| 645 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
| 646 |
+
|
| 647 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 648 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 649 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 650 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 651 |
+
|
| 652 |
+
# get unconditional embeddings for classifier free guidance
|
| 653 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 654 |
+
uncond_tokens: List[str]
|
| 655 |
+
if negative_prompt is None:
|
| 656 |
+
uncond_tokens = [""] * batch_size
|
| 657 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
| 658 |
+
raise TypeError(
|
| 659 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 660 |
+
f" {type(prompt)}."
|
| 661 |
+
)
|
| 662 |
+
elif isinstance(negative_prompt, str):
|
| 663 |
+
uncond_tokens = [negative_prompt]
|
| 664 |
+
elif batch_size != len(negative_prompt):
|
| 665 |
+
raise ValueError(
|
| 666 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 667 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 668 |
+
" the batch size of `prompt`."
|
| 669 |
+
)
|
| 670 |
+
else:
|
| 671 |
+
uncond_tokens = negative_prompt
|
| 672 |
+
|
| 673 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 674 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 675 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
| 676 |
+
|
| 677 |
+
max_length = prompt_embeds.shape[1]
|
| 678 |
+
uncond_input = self.tokenizer(
|
| 679 |
+
uncond_tokens,
|
| 680 |
+
padding="max_length",
|
| 681 |
+
max_length=max_length,
|
| 682 |
+
truncation=True,
|
| 683 |
+
return_tensors="pt",
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 687 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 688 |
+
else:
|
| 689 |
+
attention_mask = None
|
| 690 |
+
|
| 691 |
+
negative_prompt_embeds = self.text_encoder(
|
| 692 |
+
uncond_input.input_ids.to(device),
|
| 693 |
+
attention_mask=attention_mask,
|
| 694 |
+
)
|
| 695 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 696 |
+
|
| 697 |
+
if do_classifier_free_guidance:
|
| 698 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 699 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 700 |
+
|
| 701 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
| 702 |
+
|
| 703 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 704 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 705 |
+
|
| 706 |
+
if self.text_encoder is not None:
|
| 707 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 708 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 709 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 710 |
+
|
| 711 |
+
return prompt_embeds, negative_prompt_embeds
|
| 712 |
+
|
| 713 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 714 |
+
def check_inputs(
|
| 715 |
+
self,
|
| 716 |
+
prompt,
|
| 717 |
+
height,
|
| 718 |
+
width,
|
| 719 |
+
callback_steps,
|
| 720 |
+
negative_prompt=None,
|
| 721 |
+
prompt_embeds=None,
|
| 722 |
+
negative_prompt_embeds=None,
|
| 723 |
+
ip_adapter_image=None,
|
| 724 |
+
ip_adapter_image_embeds=None,
|
| 725 |
+
callback_on_step_end_tensor_inputs=None,
|
| 726 |
+
):
|
| 727 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 728 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 729 |
+
|
| 730 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
| 731 |
+
raise ValueError(
|
| 732 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 733 |
+
f" {type(callback_steps)}."
|
| 734 |
+
)
|
| 735 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 736 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 737 |
+
):
|
| 738 |
+
raise ValueError(
|
| 739 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
if prompt is not None and prompt_embeds is not None:
|
| 743 |
+
raise ValueError(
|
| 744 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 745 |
+
" only forward one of the two."
|
| 746 |
+
)
|
| 747 |
+
elif prompt is None and prompt_embeds is None:
|
| 748 |
+
raise ValueError(
|
| 749 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 750 |
+
)
|
| 751 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 752 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 753 |
+
|
| 754 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 755 |
+
raise ValueError(
|
| 756 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 757 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 761 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 762 |
+
raise ValueError(
|
| 763 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 764 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 765 |
+
f" {negative_prompt_embeds.shape}."
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 769 |
+
raise ValueError(
|
| 770 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
if ip_adapter_image_embeds is not None:
|
| 774 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 775 |
+
raise ValueError(
|
| 776 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 777 |
+
)
|
| 778 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 779 |
+
raise ValueError(
|
| 780 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 784 |
+
@torch.no_grad()
|
| 785 |
+
def stable_diffusion_call(
|
| 786 |
+
self,
|
| 787 |
+
prompt: Union[str, List[str]] = None,
|
| 788 |
+
height: Optional[int] = None,
|
| 789 |
+
width: Optional[int] = None,
|
| 790 |
+
num_inference_steps: int = 50,
|
| 791 |
+
timesteps: List[int] = None,
|
| 792 |
+
sigmas: List[float] = None,
|
| 793 |
+
guidance_scale: float = 7.5,
|
| 794 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 795 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 796 |
+
eta: float = 0.0,
|
| 797 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 798 |
+
latents: Optional[torch.Tensor] = None,
|
| 799 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 800 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 801 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 802 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 803 |
+
output_type: Optional[str] = "pil",
|
| 804 |
+
return_dict: bool = True,
|
| 805 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 806 |
+
guidance_rescale: float = 0.0,
|
| 807 |
+
clip_skip: Optional[int] = None,
|
| 808 |
+
callback_on_step_end: Optional[
|
| 809 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 810 |
+
] = None,
|
| 811 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 812 |
+
**kwargs,
|
| 813 |
+
):
|
| 814 |
+
r"""
|
| 815 |
+
The call function to the pipeline for generation.
|
| 816 |
+
|
| 817 |
+
Args:
|
| 818 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 819 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 820 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 821 |
+
The height in pixels of the generated image.
|
| 822 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 823 |
+
The width in pixels of the generated image.
|
| 824 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 825 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 826 |
+
expense of slower inference.
|
| 827 |
+
timesteps (`List[int]`, *optional*):
|
| 828 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 829 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 830 |
+
passed will be used. Must be in descending order.
|
| 831 |
+
sigmas (`List[float]`, *optional*):
|
| 832 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 833 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 834 |
+
will be used.
|
| 835 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 836 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 837 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 838 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 839 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 840 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 841 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 842 |
+
The number of images to generate per prompt.
|
| 843 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 844 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 845 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 846 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 847 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 848 |
+
generation deterministic.
|
| 849 |
+
latents (`torch.Tensor`, *optional*):
|
| 850 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 851 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 852 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 853 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 854 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 855 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 856 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 857 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 858 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 859 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 860 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 861 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 862 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 863 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 864 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 865 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 866 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 867 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 868 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 869 |
+
plain tuple.
|
| 870 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 871 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 872 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 873 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 874 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
| 875 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
| 876 |
+
using zero terminal SNR.
|
| 877 |
+
clip_skip (`int`, *optional*):
|
| 878 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 879 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 880 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 881 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 882 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 883 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 884 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 885 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 886 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 887 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 888 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 889 |
+
|
| 890 |
+
Examples:
|
| 891 |
+
|
| 892 |
+
Returns:
|
| 893 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 894 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 895 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
| 896 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
| 897 |
+
"not-safe-for-work" (nsfw) content.
|
| 898 |
+
"""
|
| 899 |
+
|
| 900 |
+
callback = kwargs.pop("callback", None)
|
| 901 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 902 |
+
self.model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
| 903 |
+
self._optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
| 904 |
+
self._exclude_from_cpu_offload = ["safety_checker"]
|
| 905 |
+
self._callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
| 906 |
+
|
| 907 |
+
if callback is not None:
|
| 908 |
+
deprecate(
|
| 909 |
+
"callback",
|
| 910 |
+
"1.0.0",
|
| 911 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 912 |
+
)
|
| 913 |
+
if callback_steps is not None:
|
| 914 |
+
deprecate(
|
| 915 |
+
"callback_steps",
|
| 916 |
+
"1.0.0",
|
| 917 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 921 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 922 |
+
|
| 923 |
+
# 0. Default height and width to unet
|
| 924 |
+
if not height or not width:
|
| 925 |
+
height = (
|
| 926 |
+
self.unet.config.sample_size
|
| 927 |
+
if self._is_unet_config_sample_size_int
|
| 928 |
+
else self.unet.config.sample_size[0]
|
| 929 |
+
)
|
| 930 |
+
width = (
|
| 931 |
+
self.unet.config.sample_size
|
| 932 |
+
if self._is_unet_config_sample_size_int
|
| 933 |
+
else self.unet.config.sample_size[1]
|
| 934 |
+
)
|
| 935 |
+
height, width = height * self.vae_scale_factor, width * self.vae_scale_factor
|
| 936 |
+
# to deal with lora scaling and other possible forward hooks
|
| 937 |
+
|
| 938 |
+
# 1. Check inputs. Raise error if not correct
|
| 939 |
+
self.check_inputs(
|
| 940 |
+
prompt,
|
| 941 |
+
height,
|
| 942 |
+
width,
|
| 943 |
+
callback_steps,
|
| 944 |
+
negative_prompt,
|
| 945 |
+
prompt_embeds,
|
| 946 |
+
negative_prompt_embeds,
|
| 947 |
+
ip_adapter_image,
|
| 948 |
+
ip_adapter_image_embeds,
|
| 949 |
+
callback_on_step_end_tensor_inputs,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
self._guidance_scale = guidance_scale
|
| 953 |
+
self._guidance_rescale = guidance_rescale
|
| 954 |
+
self._clip_skip = clip_skip
|
| 955 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 956 |
+
self._interrupt = False
|
| 957 |
+
|
| 958 |
+
# 2. Define call parameters
|
| 959 |
+
if prompt is not None and isinstance(prompt, str):
|
| 960 |
+
batch_size = 1
|
| 961 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 962 |
+
batch_size = len(prompt)
|
| 963 |
+
else:
|
| 964 |
+
batch_size = prompt_embeds.shape[0]
|
| 965 |
+
|
| 966 |
+
device = self._execution_device
|
| 967 |
+
|
| 968 |
+
# 3. Encode input prompt
|
| 969 |
+
lora_scale = (
|
| 970 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 974 |
+
prompt,
|
| 975 |
+
device,
|
| 976 |
+
num_images_per_prompt,
|
| 977 |
+
self.do_classifier_free_guidance,
|
| 978 |
+
negative_prompt,
|
| 979 |
+
prompt_embeds=prompt_embeds,
|
| 980 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 981 |
+
lora_scale=lora_scale,
|
| 982 |
+
clip_skip=self.clip_skip,
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 986 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 987 |
+
# to avoid doing two forward passes
|
| 988 |
+
if self.do_classifier_free_guidance:
|
| 989 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 990 |
+
|
| 991 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 992 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 993 |
+
ip_adapter_image,
|
| 994 |
+
ip_adapter_image_embeds,
|
| 995 |
+
device,
|
| 996 |
+
batch_size * num_images_per_prompt,
|
| 997 |
+
self.do_classifier_free_guidance,
|
| 998 |
+
)
|
| 999 |
+
|
| 1000 |
+
# 4. Prepare timesteps
|
| 1001 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1002 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
# 5. Prepare latent variables
|
| 1006 |
+
num_channels_latents = self.unet.config.in_channels
|
| 1007 |
+
latents = self.prepare_latents(
|
| 1008 |
+
batch_size * num_images_per_prompt,
|
| 1009 |
+
num_channels_latents,
|
| 1010 |
+
height,
|
| 1011 |
+
width,
|
| 1012 |
+
prompt_embeds.dtype,
|
| 1013 |
+
device,
|
| 1014 |
+
generator,
|
| 1015 |
+
latents,
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1019 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1020 |
+
|
| 1021 |
+
# 6.1 Add image embeds for IP-Adapter
|
| 1022 |
+
added_cond_kwargs = (
|
| 1023 |
+
{"image_embeds": image_embeds}
|
| 1024 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
| 1025 |
+
else None
|
| 1026 |
+
)
|
| 1027 |
+
|
| 1028 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
| 1029 |
+
timestep_cond = None
|
| 1030 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 1031 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 1032 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 1033 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 1034 |
+
).to(device=device, dtype=latents.dtype)
|
| 1035 |
+
|
| 1036 |
+
# 7. Denoising loop
|
| 1037 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1038 |
+
self._num_timesteps = len(timesteps)
|
| 1039 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1040 |
+
for i, t in enumerate(timesteps):
|
| 1041 |
+
if self.interrupt:
|
| 1042 |
+
continue
|
| 1043 |
+
|
| 1044 |
+
# expand the latents if we are doing classifier free guidance
|
| 1045 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1046 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1047 |
+
|
| 1048 |
+
# predict the noise residual
|
| 1049 |
+
noise_pred = self.unet(
|
| 1050 |
+
latent_model_input,
|
| 1051 |
+
t,
|
| 1052 |
+
encoder_hidden_states=prompt_embeds,
|
| 1053 |
+
timestep_cond=timestep_cond,
|
| 1054 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1055 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1056 |
+
return_dict=False,
|
| 1057 |
+
)[0]
|
| 1058 |
+
|
| 1059 |
+
# perform guidance
|
| 1060 |
+
if self.do_classifier_free_guidance:
|
| 1061 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1062 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1063 |
+
|
| 1064 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
| 1065 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 1066 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
| 1067 |
+
|
| 1068 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1069 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1070 |
+
|
| 1071 |
+
if callback_on_step_end is not None:
|
| 1072 |
+
callback_kwargs = {}
|
| 1073 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1074 |
+
callback_kwargs[k] = locals()[k]
|
| 1075 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1076 |
+
|
| 1077 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1078 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1079 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1080 |
+
|
| 1081 |
+
# call the callback, if provided
|
| 1082 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1083 |
+
progress_bar.update()
|
| 1084 |
+
if callback is not None and i % callback_steps == 0:
|
| 1085 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1086 |
+
callback(step_idx, t, latents)
|
| 1087 |
+
|
| 1088 |
+
if XLA_AVAILABLE:
|
| 1089 |
+
xm.mark_step()
|
| 1090 |
+
|
| 1091 |
+
if not output_type == "latent":
|
| 1092 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
| 1093 |
+
0
|
| 1094 |
+
]
|
| 1095 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1096 |
+
else:
|
| 1097 |
+
image = latents
|
| 1098 |
+
has_nsfw_concept = None
|
| 1099 |
+
|
| 1100 |
+
if has_nsfw_concept is None:
|
| 1101 |
+
do_denormalize = [True] * image.shape[0]
|
| 1102 |
+
else:
|
| 1103 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 1104 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 1105 |
+
|
| 1106 |
+
# Offload all models
|
| 1107 |
+
self.maybe_free_model_hooks()
|
| 1108 |
+
|
| 1109 |
+
if not return_dict:
|
| 1110 |
+
return (image, has_nsfw_concept)
|
| 1111 |
+
|
| 1112 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 1113 |
+
|
| 1114 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 1115 |
+
def _encode_prompt(
|
| 1116 |
+
self,
|
| 1117 |
+
prompt,
|
| 1118 |
+
device,
|
| 1119 |
+
num_images_per_prompt,
|
| 1120 |
+
do_classifier_free_guidance,
|
| 1121 |
+
negative_prompt=None,
|
| 1122 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 1123 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1124 |
+
lora_scale: Optional[float] = None,
|
| 1125 |
+
**kwargs,
|
| 1126 |
+
):
|
| 1127 |
+
r"""Encodes the prompt into text encoder hidden states."""
|
| 1128 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 1129 |
+
|
| 1130 |
+
# get prompt text embeddings
|
| 1131 |
+
text_inputs = self.tokenizer(
|
| 1132 |
+
prompt,
|
| 1133 |
+
padding="max_length",
|
| 1134 |
+
max_length=self.tokenizer.model_max_length,
|
| 1135 |
+
truncation=True,
|
| 1136 |
+
return_tensors="pt",
|
| 1137 |
+
)
|
| 1138 |
+
text_input_ids = text_inputs.input_ids
|
| 1139 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 1140 |
+
|
| 1141 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 1142 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
| 1143 |
+
logger.warning(
|
| 1144 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 1145 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 1146 |
+
)
|
| 1147 |
+
|
| 1148 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 1149 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 1150 |
+
else:
|
| 1151 |
+
attention_mask = None
|
| 1152 |
+
|
| 1153 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 1154 |
+
# cast text_encoder.dtype to prevent overflow when using bf16
|
| 1155 |
+
text_input_ids = text_input_ids.to(device=device, dtype=self.text_encoder.dtype)
|
| 1156 |
+
prompt_embeds = self.text_encoder(
|
| 1157 |
+
text_input_ids,
|
| 1158 |
+
attention_mask=attention_mask,
|
| 1159 |
+
)
|
| 1160 |
+
prompt_embeds = prompt_embeds[0]
|
| 1161 |
+
else:
|
| 1162 |
+
text_encoder_lora_scale = None
|
| 1163 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 1164 |
+
text_encoder_lora_scale = lora_scale
|
| 1165 |
+
if text_encoder_lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 1166 |
+
# dynamically adjust the LoRA scale
|
| 1167 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
| 1168 |
+
|
| 1169 |
+
prompt_embeds = self.text_encoder(
|
| 1170 |
+
text_input_ids.to(device),
|
| 1171 |
+
attention_mask=attention_mask,
|
| 1172 |
+
)
|
| 1173 |
+
prompt_embeds = prompt_embeds[0]
|
| 1174 |
+
|
| 1175 |
+
# duplicate text embeddings for each generation per prompt
|
| 1176 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 1177 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1178 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 1179 |
+
|
| 1180 |
+
# get unconditional embeddings for classifier free guidance
|
| 1181 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 1182 |
+
uncond_tokens: List[str]
|
| 1183 |
+
if negative_prompt is None:
|
| 1184 |
+
uncond_tokens = [""]
|
| 1185 |
+
elif type(prompt) is not type(negative_prompt):
|
| 1186 |
+
raise TypeError(
|
| 1187 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 1188 |
+
f" {type(prompt)}."
|
| 1189 |
+
)
|
| 1190 |
+
elif isinstance(negative_prompt, str):
|
| 1191 |
+
uncond_tokens = [negative_prompt]
|
| 1192 |
+
elif batch_size != len(negative_prompt):
|
| 1193 |
+
raise ValueError(
|
| 1194 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 1195 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 1196 |
+
" the batch size of `prompt`."
|
| 1197 |
+
)
|
| 1198 |
+
else:
|
| 1199 |
+
uncond_tokens = negative_prompt
|
| 1200 |
+
|
| 1201 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 1202 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 1203 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
| 1204 |
+
|
| 1205 |
+
max_length = prompt_embeds.shape[1]
|
| 1206 |
+
uncond_input = self.tokenizer(
|
| 1207 |
+
uncond_tokens,
|
| 1208 |
+
padding="max_length",
|
| 1209 |
+
max_length=max_length,
|
| 1210 |
+
truncation=True,
|
| 1211 |
+
return_tensors="pt",
|
| 1212 |
+
)
|
| 1213 |
+
|
| 1214 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 1215 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 1216 |
+
else:
|
| 1217 |
+
attention_mask = None
|
| 1218 |
+
|
| 1219 |
+
negative_prompt_embeds = self.text_encoder(
|
| 1220 |
+
uncond_input.input_ids.to(device),
|
| 1221 |
+
attention_mask=attention_mask,
|
| 1222 |
+
)
|
| 1223 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 1224 |
+
|
| 1225 |
+
if do_classifier_free_guidance:
|
| 1226 |
+
# duplicate unconditional embeddings for each generation per prompt
|
| 1227 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 1228 |
+
|
| 1229 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1230 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 1231 |
+
|
| 1232 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 1233 |
+
# Unscale LoRA weights to avoid overfitting. This is a hack
|
| 1234 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 1235 |
+
|
| 1236 |
+
return prompt_embeds, negative_prompt_embeds
|
| 1237 |
+
|
| 1238 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
| 1239 |
+
"""Encodes the image into image encoder hidden states."""
|
| 1240 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 1241 |
+
|
| 1242 |
+
if not isinstance(image, torch.Tensor):
|
| 1243 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 1244 |
+
|
| 1245 |
+
image = image.to(device=device, dtype=dtype)
|
| 1246 |
+
if output_hidden_states:
|
| 1247 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 1248 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1249 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
| 1250 |
+
torch.zeros_like(image), output_hidden_states=True
|
| 1251 |
+
).hidden_states[-2]
|
| 1252 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
| 1253 |
+
num_images_per_prompt, dim=0
|
| 1254 |
+
)
|
| 1255 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
| 1256 |
+
else:
|
| 1257 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 1258 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1259 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
| 1260 |
+
|
| 1261 |
+
return image_embeds, uncond_image_embeds
|
| 1262 |
+
|
| 1263 |
+
def prepare_ip_adapter_image_embeds(
|
| 1264 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
| 1265 |
+
):
|
| 1266 |
+
"""Prepares and processes IP-Adapter image embeddings."""
|
| 1267 |
+
image_embeds = []
|
| 1268 |
+
if do_classifier_free_guidance:
|
| 1269 |
+
negative_image_embeds = []
|
| 1270 |
+
if ip_adapter_image_embeds is None:
|
| 1271 |
+
for image in ip_adapter_image:
|
| 1272 |
+
if not isinstance(image, torch.Tensor):
|
| 1273 |
+
image = self.image_processor.preprocess(image)
|
| 1274 |
+
image = image.to(device=device)
|
| 1275 |
+
if len(image.shape) == 3:
|
| 1276 |
+
image = image.unsqueeze(0)
|
| 1277 |
+
image_emb, neg_image_emb = self.encode_image(image, device, num_images_per_prompt, True)
|
| 1278 |
+
image_embeds.append(image_emb)
|
| 1279 |
+
if do_classifier_free_guidance:
|
| 1280 |
+
negative_image_embeds.append(neg_image_emb)
|
| 1281 |
+
|
| 1282 |
+
if len(image_embeds) == 1:
|
| 1283 |
+
image_embeds = image_embeds[0]
|
| 1284 |
+
if do_classifier_free_guidance:
|
| 1285 |
+
negative_image_embeds = negative_image_embeds[0]
|
| 1286 |
+
else:
|
| 1287 |
+
image_embeds = torch.cat(image_embeds, dim=0)
|
| 1288 |
+
if do_classifier_free_guidance:
|
| 1289 |
+
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
|
| 1290 |
+
else:
|
| 1291 |
+
repeat_dim = 2 if do_classifier_free_guidance else 1
|
| 1292 |
+
image_embeds = ip_adapter_image_embeds.repeat_interleave(repeat_dim, dim=0)
|
| 1293 |
+
if do_classifier_free_guidance:
|
| 1294 |
+
negative_image_embeds = torch.zeros_like(image_embeds)
|
| 1295 |
+
|
| 1296 |
+
if do_classifier_free_guidance:
|
| 1297 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
| 1298 |
+
|
| 1299 |
+
return image_embeds
|
| 1300 |
+
|
| 1301 |
+
def run_safety_checker(self, image, device, dtype):
|
| 1302 |
+
"""Runs the safety checker on the generated image."""
|
| 1303 |
+
if self.safety_checker is None:
|
| 1304 |
+
has_nsfw_concept = None
|
| 1305 |
+
return image, has_nsfw_concept
|
| 1306 |
+
|
| 1307 |
+
if isinstance(self.safety_checker, StableDiffusionSafetyChecker):
|
| 1308 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
| 1309 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 1310 |
+
images=image,
|
| 1311 |
+
clip_input=safety_checker_input.pixel_values.to(dtype),
|
| 1312 |
+
)
|
| 1313 |
+
else:
|
| 1314 |
+
images_np = self.numpy_to_pil(image)
|
| 1315 |
+
safety_checker_input = self.safety_checker.feature_extractor(images_np, return_tensors="pt").to(device)
|
| 1316 |
+
has_nsfw_concept = self.safety_checker(
|
| 1317 |
+
images=image,
|
| 1318 |
+
clip_input=safety_checker_input.pixel_values.to(dtype),
|
| 1319 |
+
)[1]
|
| 1320 |
+
|
| 1321 |
+
return image, has_nsfw_concept
|
| 1322 |
+
|
| 1323 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 1324 |
+
def decode_latents(self, latents):
|
| 1325 |
+
"""Decodes the latents to images."""
|
| 1326 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 1327 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1328 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 1329 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 1330 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 1331 |
+
return image
|
| 1332 |
+
|
| 1333 |
+
@property
|
| 1334 |
+
def guidance_scale(self):
|
| 1335 |
+
return self._guidance_scale
|
| 1336 |
+
|
| 1337 |
+
@property
|
| 1338 |
+
def guidance_rescale(self):
|
| 1339 |
+
return self._guidance_rescale
|
| 1340 |
+
|
| 1341 |
+
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
| 1342 |
+
def get_guidance_scale_embedding(
|
| 1343 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
| 1344 |
+
):
|
| 1345 |
+
"""Gets the guidance scale embedding for classifier free guidance conditioning.
|
| 1346 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 1347 |
+
|
| 1348 |
+
Args:
|
| 1349 |
+
w (`torch.Tensor`):
|
| 1350 |
+
The guidance scale tensor used for classifier free guidance conditioning.
|
| 1351 |
+
embedding_dim (`int`, defaults to 512):
|
| 1352 |
+
The dimensionality of the guidance scale embedding.
|
| 1353 |
+
dtype (`torch.dtype`, defaults to torch.float32):
|
| 1354 |
+
The dtype of the embedding.
|
| 1355 |
+
|
| 1356 |
+
Returns:
|
| 1357 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
| 1358 |
+
"""
|
| 1359 |
+
assert len(w.shape) == 1
|
| 1360 |
+
w = w * 1000.0
|
| 1361 |
+
|
| 1362 |
+
half_dim = embedding_dim // 2
|
| 1363 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 1364 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 1365 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 1366 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 1367 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 1368 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 1369 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
| 1370 |
+
return emb
|
| 1371 |
+
|
| 1372 |
+
@property
|
| 1373 |
+
def clip_skip(self):
|
| 1374 |
+
return self._clip_skip
|
| 1375 |
+
|
| 1376 |
+
@property
|
| 1377 |
+
def num_timesteps(self):
|
| 1378 |
+
return self._num_timesteps
|
| 1379 |
+
|
| 1380 |
+
@property
|
| 1381 |
+
def interrupt(self):
|
| 1382 |
+
return self._interrupt
|
| 1383 |
+
|
| 1384 |
+
@property
|
| 1385 |
+
def cross_attention_kwargs(self):
|
| 1386 |
+
return self._cross_attention_kwargs
|
| 1387 |
+
|
| 1388 |
+
@property
|
| 1389 |
+
def do_classifier_free_guidance(self):
|
| 1390 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
| 1391 |
+
|
| 1392 |
|
| 1393 |
### Make prompt list for each regions
|
| 1394 |
def promptsmaker(prompts, batch):
|
|
|
|
| 1603 |
get_attn_maps(self, attn_weight)
|
| 1604 |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
| 1605 |
return attn_weight @ value
|
| 1606 |
+
|
| 1607 |
+
|
| 1608 |
+
def retrieve_timesteps(
|
| 1609 |
+
scheduler,
|
| 1610 |
+
num_inference_steps: Optional[int] = None,
|
| 1611 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 1612 |
+
timesteps: Optional[List[int]] = None,
|
| 1613 |
+
sigmas: Optional[List[float]] = None,
|
| 1614 |
+
**kwargs,
|
| 1615 |
+
):
|
| 1616 |
+
r"""
|
| 1617 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 1618 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 1619 |
+
|
| 1620 |
+
Args:
|
| 1621 |
+
scheduler (`SchedulerMixin`):
|
| 1622 |
+
The scheduler to get timesteps from.
|
| 1623 |
+
num_inference_steps (`int`):
|
| 1624 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 1625 |
+
must be `None`.
|
| 1626 |
+
device (`str` or `torch.device`, *optional*):
|
| 1627 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 1628 |
+
timesteps (`List[int]`, *optional*):
|
| 1629 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 1630 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 1631 |
+
sigmas (`List[float]`, *optional*):
|
| 1632 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 1633 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 1634 |
+
|
| 1635 |
+
Returns:
|
| 1636 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 1637 |
+
second element is the number of inference steps.
|
| 1638 |
+
"""
|
| 1639 |
+
if timesteps is not None and sigmas is not None:
|
| 1640 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 1641 |
+
if timesteps is not None:
|
| 1642 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 1643 |
+
if not accepts_timesteps:
|
| 1644 |
+
raise ValueError(
|
| 1645 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 1646 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 1647 |
+
)
|
| 1648 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 1649 |
+
timesteps = scheduler.timesteps
|
| 1650 |
+
num_inference_steps = len(timesteps)
|
| 1651 |
+
elif sigmas is not None:
|
| 1652 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 1653 |
+
if not accept_sigmas:
|
| 1654 |
+
raise ValueError(
|
| 1655 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 1656 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 1657 |
+
)
|
| 1658 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 1659 |
+
timesteps = scheduler.timesteps
|
| 1660 |
+
num_inference_steps = len(timesteps)
|
| 1661 |
+
else:
|
| 1662 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 1663 |
+
timesteps = scheduler.timesteps
|
| 1664 |
+
return timesteps, num_inference_steps
|
| 1665 |
+
|
| 1666 |
+
|
| 1667 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 1668 |
+
r"""
|
| 1669 |
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
| 1670 |
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
| 1671 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
| 1672 |
+
|
| 1673 |
+
Args:
|
| 1674 |
+
noise_cfg (`torch.Tensor`):
|
| 1675 |
+
The predicted noise tensor for the guided diffusion process.
|
| 1676 |
+
noise_pred_text (`torch.Tensor`):
|
| 1677 |
+
The predicted noise tensor for the text-guided diffusion process.
|
| 1678 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 1679 |
+
A rescale factor applied to the noise predictions.
|
| 1680 |
+
|
| 1681 |
+
Returns:
|
| 1682 |
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
| 1683 |
+
"""
|
| 1684 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
| 1685 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 1686 |
+
# rescale the results from guidance (fixes overexposure)
|
| 1687 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 1688 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 1689 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 1690 |
+
return noise_cfg
|