Datasets:

ArXiv:
PRISM / src /processor /trainer.py
emad2001's picture
Upload folder using huggingface_hub
36fdbcf verified
import torch
import torch.nn.functional as F
import random
import numpy as np
from src.utils.util import _bbox_mask
from src.utils import scribble, boundary_selection
from .trainer_basic import Trainer_basic
class Trainer(Trainer_basic):
def __init__(self, args, logger):
super().__init__(args, logger)
def forward(self, sam_model, image, label, iter_nums, train=False, return_each_iter=False):
if return_each_iter:
return_mask_total_iter = torch.zeros([iter_nums, 1, image.size(2), image.size(3), image.size(4)])
image_embedding, feature_list = self.sam.image_encoder(image)
self.click_points = []
self.click_labels = []
return_loss = 0
prev_masks = torch.zeros_like(label, dtype=torch.float).to(label.device)
for iter_num in range(iter_nums):
loss = 0
prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks
points_input, labels_input, box_input = self.get_points(prev_masks_sigmoid, label, train_mode=train)
mask, dice_pred = self.iteration_forward(sam_model, feature_list, image_embedding, prev_masks,
points=[points_input, labels_input], boxes=box_input)
# ========================================================
if self.args.multiple_outputs:
dice_pred_best, max_label_index = torch.max(dice_pred, dim=1)
mask_list = [mask[i, max_label_index[i], :].unsqueeze(0) for i in range(mask.size(0))]
mask_best = torch.stack(mask_list, dim=0)
else:
mask_best = mask
# ========================================================
if train:
if self.args.multiple_outputs:
for i in range(mask.size(1)):
single_mask, single_dice = mask[:, i, :].unsqueeze(1), dice_pred[:, i]
loss += self.calculate_loss(single_mask, prev_masks, single_dice, label, labels_input, iter_num)
else:
loss = self.calculate_loss(mask, prev_masks, dice_pred[:, 0], label, labels_input, iter_num)
# ========================================================
if self.args.refine:
if self.args.no_detach:
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
[self.click_points, self.click_labels],
mask_best)
else:
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach())
print('dice before refine {} and after {}'.format(
self.get_dice_score(torch.sigmoid(mask_best), label),
self.get_dice_score(torch.sigmoid(mask_refine), label)))
# ========================================================
loss += self.loss_segmentation(mask_refine, label) * 1
mask_best = mask_refine
# ========================================================
else:
if self.args.refine:
if self.args.no_detach:
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
[self.click_points, self.click_labels],
mask_best)
else:
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
[self.click_points, self.click_labels],
mask_best.detach())
if iter_num == iter_nums - 1 or iter_num == 0:
self.logger.info('dice before refine {} and after {}, label 0: {}, label 1: {}'.format(
self.get_dice_score(torch.sigmoid(mask_best), label), self.get_dice_score(torch.sigmoid(mask_refine), label),
str(labels_input.numel() - torch.count_nonzero(labels_input)), str(torch.count_nonzero(labels_input)) ) )
mask_best = mask_refine
loss = self.get_dice_score(torch.sigmoid(mask_best), label)
return_loss += loss
prev_masks = mask_best
if return_each_iter:
return_mask_total_iter[iter_num, :] = mask_best
if return_each_iter:
return return_loss / iter_nums, return_mask_total_iter
else:
return return_loss / iter_nums, prev_masks
def get_points(self, prev_masks, label, train_mode=True):
mode = 'train' if train_mode else 'validation'
batch_points, batch_labels = self.get_next_point(prev_masks, label, mode=mode)
points_co = torch.cat(batch_points, dim=0).to(self.args.device) # b x num_clicks x 3
points_la = torch.cat(batch_labels, dim=0).to(self.args.device) # b x num_clicks x 1
self.click_points.append(points_co)
self.click_labels.append(points_la)
points_input = points_co
labels_input = points_la
bbox_coords = _bbox_mask(label[:, 0, :], mode=mode, dynamic=self.args.dynamic_box).to(self.args.device) if self.args.use_box else None
return points_input, labels_input, bbox_coords
def get_next_point(self, prev_seg, label, mode='train'): # prev_seg --> probability
batch_points = []
batch_labels = []
pred_masks = (prev_seg > 0.5)
true_masks = (label > 0)
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks))
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks)
to_point_mask = torch.logical_or(fn_masks, fp_masks)
# do_scribble = random.random()
# sample_method = random.choice(['line', 'center', 'default'])
sample_method = 'center'
scribble_types = {
'line': 'LineScribble',
'center': 'CenterlineScribble',
'default': 'ContourScribble'
}
def create_scribble_mask(scribble_type, data):
scribble_object = getattr(scribble, scribble_type)()
scribble_mask = scribble_object.batch_scribble(data).permute(1, 2, 3, 0)
return scribble_mask > 0
points_list = [len(torch.argwhere(to_point_mask[i])) for i in range(to_point_mask.size(0))]
points_min = min(points_list)
num_clicks = self.args.num_clicks if mode == 'train' else self.args.num_clicks_validation
click_size = points_min if num_clicks > points_min else num_clicks
dynamic_size = random.randint(1, click_size) if self.args.dynamic and mode == 'train' else click_size
print(f"num_clicks {num_clicks} points_length: {points_min} dynamic_size: {dynamic_size}")
for i in range(label.shape[0]):
bp_list, bl_list = [], []
points = torch.argwhere(to_point_mask[i])
point_index = np.random.choice(len(points), size=dynamic_size, replace=False)
points_select = points[point_index] # each row tensor([0, x, y, z]), size --> num_clicks x 4
for click_index in range(dynamic_size):
point = points_select[click_index]
if fn_masks[i, 0, point[1], point[2], point[3]]:
is_positive = True
else:
is_positive = False
bp = point[1:].clone().detach().reshape(1, 1, 3)
bl = torch.tensor([int(is_positive), ]).reshape(1, 1)
bp_list.append(bp)
bl_list.append(bl)
if self.args.use_scribble:
fg, bg_orig = fn_masks[i].permute(3, 0, 1, 2).float(), fp_masks[i].permute(3, 0, 1, 2).float()
# ====== with the purpose of efficiency only for first few epochs ======
bbx = _bbox_mask(label[i, 0, :].unsqueeze(0))
diff_ = 15
i_min, i_max = bbx[:, :, 0], bbx[:, :, 3]
j_min, j_max = bbx[:, :, 1], bbx[:, :, 4]
k_min, k_max = bbx[:, :, 2], bbx[:, :, 5]
if max(0, i_min - diff_) < min(i_max + diff_, 126):
i_min, i_max = max(0, i_min - diff_), min(i_max + diff_, 126)
if max(0, j_min - diff_) < min(j_max + diff_, 126):
j_min, j_max = max(0, j_min - diff_), min(j_max + diff_, 126)
if max(0, k_min - diff_) < min(k_max + diff_, 126):
k_min, k_max = max(0, k_min - diff_), min(k_max + diff_, 126)
bg_mask = torch.zeros_like(bg_orig).permute(1, 2, 3, 0)
bg_mask[:, i_min:i_max, j_min:j_max, k_min:k_max] = 1
bg = bg_orig * bg_mask.permute(3, 0, 1, 2)
print('filter out voxels: {}'.format(torch.count_nonzero(bg_orig) - torch.count_nonzero(bg)))
scribble_type = scribble_types.get(sample_method, scribble_types['default'])
scribble_mask_fg = create_scribble_mask(scribble_type, fg)
limit_num = 500
if torch.count_nonzero(scribble_mask_fg) >= limit_num + 50:
a = torch.argwhere(scribble_mask_fg).size(0) - limit_num
random_number = random.randint(0, a)
fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :] # for computation only
else:
fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)
fg_coors_label = torch.ones(1, fg_coors.size(1))
bp_list.append(fg_coors)
bl_list.append(fg_coors_label)
scribble_mask_bg = create_scribble_mask(scribble_type, bg)
if torch.count_nonzero(scribble_mask_bg) >= limit_num + 50: # dynamic_size is 50
a = torch.argwhere(scribble_mask_bg).size(0) - limit_num
random_number = random.randint(0, a)
bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :]
else:
bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)
bg_coors_label = torch.zeros(1, bg_coors.size(1))
bp_list.append(bg_coors)
bl_list.append(bg_coors_label)
batch_points.append(torch.cat(bp_list, dim=1))
batch_labels.append(torch.cat(bl_list, dim=1))
# for scribble
if self.args.use_scribble:
smallest_n = min(tensor.size(1) for tensor in batch_labels)
batch_points = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_points]
batch_labels = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_labels]
# # Check the shapes of the adjusted tensors
# for i, tensor in enumerate(batch_points):
# print(f"Tensor {i + 1} shape: {tensor.shape}")
print('First batch: fn: {:.4f}, fp: {:.4f}, label 0: {}, label 1: {}'.format(
torch.count_nonzero(fn_masks[0]) / torch.count_nonzero(true_masks[0]),
torch.count_nonzero(fp_masks[0]) / torch.count_nonzero(true_masks[0]),
str(batch_labels[0].numel() - torch.count_nonzero(batch_labels[0])),
str(torch.count_nonzero(batch_labels[0]))
)
)
print('--- ===================================== ---')
print('--- above before model, below after model ---')
print('--- ===================================== ---')
return batch_points, batch_labels
def iteration_forward(self, sam_model, features, image_embedding, prev_masks, points=None, boxes=None):
prev_masks = F.interpolate(prev_masks, scale_factor=0.25)
features = [features[i].to(self.args.device) for i in range(0, len(features))]
new_point_embedding, new_image_embedding = sam_model.prompt_encoder(
points=points,
boxes=boxes,
masks=prev_masks,
image_embeddings=image_embedding.to(self.args.device)
)
mask, dice_pred = sam_model.mask_decoder(
prompt_embeddings=new_point_embedding, # (B, 2, 256)
image_embeddings=new_image_embedding, # (B, 256, 64, 64)
feature_list=features,
)
return mask, dice_pred