Datasets:
Add 'rte' config data files
Browse files- README.md +34 -0
- dataset_infos.json +16 -30
- rte/test-00000-of-00001.parquet +3 -0
- rte/train-00000-of-00001.parquet +3 -0
- rte/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -207,6 +207,32 @@ dataset_info:
|
|
207 |
num_examples: 390965
|
208 |
download_size: 73472088
|
209 |
dataset_size: 111725685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
- config_name: sst2
|
211 |
features:
|
212 |
- name: sentence
|
@@ -310,6 +336,14 @@ configs:
|
|
310 |
path: qqp/validation-*
|
311 |
- split: test
|
312 |
path: qqp/test-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
- config_name: sst2
|
314 |
data_files:
|
315 |
- split: train
|
|
|
207 |
num_examples: 390965
|
208 |
download_size: 73472088
|
209 |
dataset_size: 111725685
|
210 |
+
- config_name: rte
|
211 |
+
features:
|
212 |
+
- name: sentence1
|
213 |
+
dtype: string
|
214 |
+
- name: sentence2
|
215 |
+
dtype: string
|
216 |
+
- name: label
|
217 |
+
dtype:
|
218 |
+
class_label:
|
219 |
+
names:
|
220 |
+
'0': entailment
|
221 |
+
'1': not_entailment
|
222 |
+
- name: idx
|
223 |
+
dtype: int32
|
224 |
+
splits:
|
225 |
+
- name: train
|
226 |
+
num_bytes: 847320
|
227 |
+
num_examples: 2490
|
228 |
+
- name: validation
|
229 |
+
num_bytes: 90728
|
230 |
+
num_examples: 277
|
231 |
+
- name: test
|
232 |
+
num_bytes: 974053
|
233 |
+
num_examples: 3000
|
234 |
+
download_size: 1267150
|
235 |
+
dataset_size: 1912101
|
236 |
- config_name: sst2
|
237 |
features:
|
238 |
- name: sentence
|
|
|
336 |
path: qqp/validation-*
|
337 |
- split: test
|
338 |
path: qqp/test-*
|
339 |
+
- config_name: rte
|
340 |
+
data_files:
|
341 |
+
- split: train
|
342 |
+
path: rte/train-*
|
343 |
+
- split: validation
|
344 |
+
path: rte/validation-*
|
345 |
+
- split: test
|
346 |
+
path: rte/test-*
|
347 |
- config_name: sst2
|
348 |
data_files:
|
349 |
- split: train
|
dataset_infos.json
CHANGED
@@ -533,39 +533,32 @@
|
|
533 |
},
|
534 |
"rte": {
|
535 |
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
536 |
-
"citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n
|
537 |
"homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
|
538 |
"license": "",
|
539 |
"features": {
|
540 |
"sentence1": {
|
541 |
"dtype": "string",
|
542 |
-
"id": null,
|
543 |
"_type": "Value"
|
544 |
},
|
545 |
"sentence2": {
|
546 |
"dtype": "string",
|
547 |
-
"id": null,
|
548 |
"_type": "Value"
|
549 |
},
|
550 |
"label": {
|
551 |
-
"num_classes": 2,
|
552 |
"names": [
|
553 |
"entailment",
|
554 |
"not_entailment"
|
555 |
],
|
556 |
-
"names_file": null,
|
557 |
-
"id": null,
|
558 |
"_type": "ClassLabel"
|
559 |
},
|
560 |
"idx": {
|
561 |
"dtype": "int32",
|
562 |
-
"id": null,
|
563 |
"_type": "Value"
|
564 |
}
|
565 |
},
|
566 |
-
"
|
567 |
-
"
|
568 |
-
"builder_name": "glue",
|
569 |
"config_name": "rte",
|
570 |
"version": {
|
571 |
"version_str": "1.0.0",
|
@@ -575,35 +568,28 @@
|
|
575 |
"patch": 0
|
576 |
},
|
577 |
"splits": {
|
578 |
-
"test": {
|
579 |
-
"name": "test",
|
580 |
-
"num_bytes": 975936,
|
581 |
-
"num_examples": 3000,
|
582 |
-
"dataset_name": "glue"
|
583 |
-
},
|
584 |
"train": {
|
585 |
"name": "train",
|
586 |
-
"num_bytes":
|
587 |
"num_examples": 2490,
|
588 |
-
"dataset_name":
|
589 |
},
|
590 |
"validation": {
|
591 |
"name": "validation",
|
592 |
-
"num_bytes":
|
593 |
"num_examples": 277,
|
594 |
-
"dataset_name":
|
595 |
-
}
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
"
|
600 |
-
"
|
601 |
}
|
602 |
},
|
603 |
-
"download_size":
|
604 |
-
"
|
605 |
-
"
|
606 |
-
"size_in_bytes": 2612885
|
607 |
},
|
608 |
"wnli": {
|
609 |
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
|
|
533 |
},
|
534 |
"rte": {
|
535 |
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
536 |
+
"citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
537 |
"homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
|
538 |
"license": "",
|
539 |
"features": {
|
540 |
"sentence1": {
|
541 |
"dtype": "string",
|
|
|
542 |
"_type": "Value"
|
543 |
},
|
544 |
"sentence2": {
|
545 |
"dtype": "string",
|
|
|
546 |
"_type": "Value"
|
547 |
},
|
548 |
"label": {
|
|
|
549 |
"names": [
|
550 |
"entailment",
|
551 |
"not_entailment"
|
552 |
],
|
|
|
|
|
553 |
"_type": "ClassLabel"
|
554 |
},
|
555 |
"idx": {
|
556 |
"dtype": "int32",
|
|
|
557 |
"_type": "Value"
|
558 |
}
|
559 |
},
|
560 |
+
"builder_name": "glue-ci",
|
561 |
+
"dataset_name": "glue-ci",
|
|
|
562 |
"config_name": "rte",
|
563 |
"version": {
|
564 |
"version_str": "1.0.0",
|
|
|
568 |
"patch": 0
|
569 |
},
|
570 |
"splits": {
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
"train": {
|
572 |
"name": "train",
|
573 |
+
"num_bytes": 847320,
|
574 |
"num_examples": 2490,
|
575 |
+
"dataset_name": null
|
576 |
},
|
577 |
"validation": {
|
578 |
"name": "validation",
|
579 |
+
"num_bytes": 90728,
|
580 |
"num_examples": 277,
|
581 |
+
"dataset_name": null
|
582 |
+
},
|
583 |
+
"test": {
|
584 |
+
"name": "test",
|
585 |
+
"num_bytes": 974053,
|
586 |
+
"num_examples": 3000,
|
587 |
+
"dataset_name": null
|
588 |
}
|
589 |
},
|
590 |
+
"download_size": 1267150,
|
591 |
+
"dataset_size": 1912101,
|
592 |
+
"size_in_bytes": 3179251
|
|
|
593 |
},
|
594 |
"wnli": {
|
595 |
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
rte/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6cad83b691b7df6b73738a91111a0e196a294ab3988b3fb261a0bc7a455af0d
|
3 |
+
size 618851
|
rte/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adc4c0a0252a64a75b101f5e73bd5c1511864580763ddd4fb48c429e59f2dde2
|
3 |
+
size 580730
|
rte/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c0487bc75ae68a5d7458807b57973c656ae9c47c64a114a8b01002226fddf4a
|
3 |
+
size 67569
|