|
""" |
|
Data processing module for MLPerf benchmark data. |
|
""" |
|
|
|
import glob |
|
import json |
|
import logging |
|
import os |
|
import re |
|
from collections import defaultdict |
|
from datetime import datetime |
|
|
|
import polars as pl |
|
from datasets import Dataset |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
FEATURES = { |
|
"Performance": { |
|
"metrics.result": "continuous", |
|
"metrics.result_per_accelerator": "continuous", |
|
"metrics.accuracy": "continuous", |
|
}, |
|
"Model": { |
|
"model.name": "categorical", |
|
"model.mlperf_name": "categorical", |
|
"model.architecture": "categorical", |
|
"model.number_of_parameters": "continuous", |
|
"model.weight_data_types": "categorical", |
|
}, |
|
"Accelerator": { |
|
"system.accelerator.vendor": "categorical", |
|
"system.accelerator.name": "categorical", |
|
"system.accelerator.count_per_node": "continuous", |
|
"system.accelerator.total_count": "continuous", |
|
"system.accelerator.memory_capacity": "continuous", |
|
"system.accelerator.memory_config": "text", |
|
"system.interconnect.accelerator": "categorical", |
|
}, |
|
"CPU": { |
|
"system.cpu.vendor": "categorical", |
|
"system.cpu.model": "categorical", |
|
"system.cpu.core_count": "continuous", |
|
"system.cpu.count_per_node": "continuous", |
|
"system.cpu.frequency": "continuous", |
|
"system.cpu.caches": "text", |
|
"system.cpu.vcpu_count": "continuous", |
|
}, |
|
"System": { |
|
"system.name": "text", |
|
"system.type": "categorical", |
|
"system.cooling": "categorical", |
|
"system.number_of_nodes": "continuous", |
|
"system.memory.capacity": "continuous", |
|
"system.memory.configuration": "text", |
|
"system.interconnect.accelerator_host": "categorical", |
|
}, |
|
"Software": { |
|
"software.framework": "categorical", |
|
"software.version": "categorical", |
|
"software.operating_system": "categorical", |
|
}, |
|
"Submission": { |
|
"submission.organization": "categorical", |
|
"submission.division": "categorical", |
|
"submission.scenario": "categorical", |
|
"submission.availability": "boolean", |
|
"submission.debug_uid": "text", |
|
}, |
|
} |
|
|
|
MISSING_VALUES = defaultdict(set) |
|
|
|
|
|
def get_feature_type(feature_name: str) -> str: |
|
"""Get the type of a feature from the FEATURES dictionary.""" |
|
for group in FEATURES.values(): |
|
if feature_name in group: |
|
return group[feature_name] |
|
return "categorical" |
|
|
|
|
|
def find_result_files(base_path: str = "semi-raw-mlperf-data") -> list[str]: |
|
"""Find all cmx-result-summary.json files.""" |
|
return glob.glob( |
|
os.path.join(base_path, "**/cmx-result-summary.json"), recursive=True |
|
) |
|
|
|
|
|
def load_raw_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame: |
|
"""Load and merge data from MLPerf result files.""" |
|
result_files = find_result_files(base_path) |
|
logger.info(f"Found {len(result_files)} result files") |
|
all_records = [] |
|
|
|
for file_path in result_files: |
|
with open(file_path, "r") as f: |
|
all_records.extend(json.loads(f.read())) |
|
|
|
df = pl.DataFrame(all_records, infer_schema_length=None) |
|
logger.info(f"Loaded {len(df)} raw benchmark records") |
|
|
|
rename_map = { |
|
"Accuracy": "metrics.accuracy", |
|
"Availability": "submission.availability", |
|
"Organization": "submission.organization", |
|
"Division": "submission.division", |
|
"Scenario": "submission.scenario", |
|
"Result": "metrics.result", |
|
"Units": "metrics.units", |
|
"MlperfModel": "model.mlperf_name", |
|
"Model": "model.name", |
|
"weight_data_types": "model.weight_data_types", |
|
"framework": "software.framework", |
|
"operating_system": "software.operating_system", |
|
"SystemName": "system.name", |
|
"system.system_name": "system.name", |
|
"SystemType": "system.type", |
|
"system.system_type": "system.type", |
|
"accelerator_model_name": "system.accelerator.name", |
|
"system.accelerator_model_name": "system.accelerator.name", |
|
"number_of_nodes": "system.number_of_nodes", |
|
"accelerators_per_node": "system.accelerator.count_per_node", |
|
"system.accelerators_per_node": "system.accelerator.count_per_node", |
|
"host_processor_core_count": "system.cpu.core_count", |
|
"system.host_processor_core_count": "system.cpu.core_count", |
|
"host_processor_model_name": "system.cpu.model", |
|
"system.host_processor_model_name": "system.cpu.model", |
|
"host_processors_per_node": "system.cpu.count_per_node", |
|
"system.host_processors_per_node": "system.cpu.count_per_node", |
|
"cooling": "system.cooling", |
|
"system.cooling": "system.cooling", |
|
"system.accelerator_host_interconnect": "system.interconnect.accelerator_host", |
|
"system.accelerator_interconnect": "system.interconnect.accelerator", |
|
"system.accelerator_memory_capacity": "system.accelerator.memory_capacity", |
|
"system.accelerator_memory_configuration": "system.accelerator.memory_config", |
|
"system.host_memory_capacity": "system.memory.capacity", |
|
"system.host_memory_configuration": "system.memory.configuration", |
|
"system.host_processor_frequency": "system.cpu.frequency", |
|
"system.host_processor_caches": "system.cpu.caches", |
|
"system.host_processor_vcpu_count": "system.cpu.vcpu_count", |
|
"benchmark_name": "benchmark.name", |
|
"benchmark_version": "benchmark.version", |
|
"datetime_last_commit": "datetime", |
|
"debug_uid": "submission.debug_uid", |
|
} |
|
|
|
for old_name, new_name in rename_map.items(): |
|
if old_name in df.columns: |
|
if new_name in df.columns: |
|
df = df.drop(new_name) |
|
df = df.rename({old_name: new_name}) |
|
|
|
columns_to_select = list(set(rename_map.values())) |
|
return df.select([col for col in columns_to_select if col in df.columns]) |
|
|
|
|
|
def is_within_tolerance(value1: float, value2: float, tolerance: float = 0.1) -> bool: |
|
"""Check if two values are within a specified tolerance.""" |
|
if value1 is None or value2 is None: |
|
return value1 == value2 |
|
|
|
if value1 == 0 or value2 == 0: |
|
return value1 == value2 |
|
|
|
percentage_diff = abs(value1 - value2) / max(abs(value1), abs(value2)) |
|
return percentage_diff <= tolerance |
|
|
|
|
|
def find_similar_configurations( |
|
df: pl.DataFrame, query_config: dict, continuous_tolerance: float = 0.1 |
|
) -> pl.DataFrame: |
|
"""Find configurations similar to the query_config.""" |
|
mask = pl.lit(True) |
|
|
|
for feature, value in query_config.items(): |
|
if value is None: |
|
continue |
|
|
|
if get_feature_type(feature) == "continuous": |
|
lower_bound = value * (1 - continuous_tolerance) |
|
upper_bound = value * (1 + continuous_tolerance) |
|
feature_mask = (pl.col(feature) >= lower_bound) & ( |
|
pl.col(feature) <= upper_bound |
|
) |
|
else: |
|
feature_mask = pl.col(feature) == value |
|
|
|
mask = mask & feature_mask |
|
|
|
return df.filter(mask) |
|
|
|
|
|
def convert_datetime_to_iso(value: str) -> str | None: |
|
"""Convert datetime string to ISO 8601 format.""" |
|
if not value or value in ["", "N/A", "null"]: |
|
MISSING_VALUES["datetime_values"].add(str(value)) |
|
return None |
|
|
|
try: |
|
|
|
if "/" in value and "_" in value: |
|
|
|
iso_value = value.replace("/", "-").replace("_", "T") |
|
|
|
datetime.fromisoformat(iso_value) |
|
return iso_value |
|
|
|
|
|
|
|
for fmt in ["%Y-%m-%d %H:%M:%S", "%Y/%m/%d %H:%M:%S", "%Y-%m-%dT%H:%M:%S"]: |
|
try: |
|
dt = datetime.strptime(value, fmt) |
|
return dt.isoformat() |
|
except ValueError: |
|
continue |
|
|
|
|
|
MISSING_VALUES["datetime_values"].add(str(value)) |
|
return None |
|
|
|
except Exception as e: |
|
MISSING_VALUES["datetime_values"].add(str(value)) |
|
return None |
|
|
|
|
|
def convert_memory_to_gb(value: str) -> float | None: |
|
"""Convert memory string to GB.""" |
|
if value is None: |
|
return None |
|
|
|
if "+" in value: |
|
left, right = value.split("+", 1) |
|
return (convert_memory_to_gb(left) or 0.0) + ( |
|
convert_memory_to_gb(right) or 0.0 |
|
) or None |
|
|
|
value = value.replace(" ", "").upper() |
|
numeric = "" |
|
for char in value: |
|
if char.isdigit() or char == ".": |
|
numeric += char |
|
else: |
|
break |
|
|
|
if not numeric: |
|
return None |
|
|
|
number = float(numeric) |
|
if "TB" in value or "TIB" in value: |
|
return number * 1024 |
|
elif "GB" in value or "GIB" in value: |
|
return number |
|
else: |
|
return None |
|
|
|
|
|
def convert_frequency_to_ghz(value: str) -> float | None: |
|
"""Convert frequency string to GHz.""" |
|
if not value or value == "undefined": |
|
MISSING_VALUES["frequency_values"].add(str(value)) |
|
return None |
|
|
|
value = value.strip().upper() |
|
if value.isdigit(): |
|
return float(value) / 1000 |
|
|
|
matches = re.findall(r"([\d.]+)\s*(?:GHZ|MHZ)?", value, re.IGNORECASE) |
|
if not matches: |
|
MISSING_VALUES["frequency_values"].add(str(value)) |
|
return None |
|
|
|
frequencies = [float(match) for match in matches] |
|
max_freq = max(frequencies) |
|
if "MHZ" in value.upper(): |
|
max_freq /= 1000 |
|
|
|
return max_freq |
|
|
|
|
|
def extract_accelerator_vendor(name: str) -> str | None: |
|
"""Extract vendor from accelerator name.""" |
|
if name is None: |
|
MISSING_VALUES["accelerator_names"].add(None) |
|
return None |
|
|
|
name_upper = name.upper() |
|
known_vendors = { |
|
"NVIDIA": ["NVIDIA", "TESLA", "A100", "H100", "T4"], |
|
"AMD": ["AMD"], |
|
"Intel": ["INTEL", "HABANA", "GAUDI"], |
|
"Google": ["TPU", "TRILLIUM", "LPU", "VPU"], |
|
"Qualcomm": ["QUALCOMM", "ADRENO", "HEXAGON", "CLOUD AI 100", "SNAPDRAGON"], |
|
"UntetherAI": ["UNTETHERAIR", "SPEEDAI"], |
|
"Huawei": ["DAVINCI"], |
|
"Moffett": ["MOFFETT"], |
|
} |
|
|
|
for vendor, keywords in known_vendors.items(): |
|
if any(keyword in name_upper for keyword in keywords): |
|
return vendor |
|
|
|
MISSING_VALUES["accelerator_vendors"].add(name) |
|
return None |
|
|
|
|
|
def extract_cpu_vendor(name: str) -> str | None: |
|
"""Extract vendor from CPU model name.""" |
|
if name is None: |
|
MISSING_VALUES["cpu_names"].add(None) |
|
return None |
|
|
|
name_upper = name.upper() |
|
known_vendors = { |
|
"AMD": ["AMD", "EPYC"], |
|
"Intel": ["INTEL", "XEON"], |
|
"NVIDIA": ["NVIDIA", "GRACE"], |
|
"ARM": ["ARM", "CORTEX", "NEOVERSE", "ARMV8"], |
|
"AWS": ["AWS", "GRAVITON"], |
|
"Apple": ["APPLE", "M1", "M2", "M3"], |
|
"Qualcomm": ["QUALCOMM", "SNAPDRAGON"], |
|
} |
|
|
|
for vendor, keywords in known_vendors.items(): |
|
if any(keyword in name_upper for keyword in keywords): |
|
return vendor |
|
|
|
MISSING_VALUES["cpu_vendors"].add(name) |
|
return None |
|
|
|
|
|
def extract_framework_info(framework_str: str) -> list[tuple[str, str]]: |
|
"""Extract framework name-version pairs.""" |
|
if not framework_str: |
|
return [] |
|
|
|
results = [] |
|
for item in framework_str.split(","): |
|
item = item.strip() |
|
name_match = re.search(r"(\w+)\s+", item) |
|
version_match = re.search(r"\s+([\d\.]+)", item) |
|
|
|
if name_match and version_match: |
|
name = name_match.group(1).lower() |
|
version = version_match.group(1) |
|
results.append((name, version.strip("."))) |
|
|
|
return results |
|
|
|
|
|
def clean_string_value(value: str) -> str | None: |
|
"""Clean empty and N/A string values.""" |
|
if value.upper() in ["", "N/A", "DUMMY"]: |
|
return None |
|
return value |
|
|
|
|
|
def normalize_interconnect_type(value: str) -> str | None: |
|
"""Normalize interconnect type strings.""" |
|
if value is None or value.upper() in ["TBD", "TODO", "TODD"]: |
|
MISSING_VALUES["interconnect_types"].add(str(value)) |
|
return None |
|
|
|
value_upper = value.upper() |
|
if "NVLINK" in value_upper: |
|
if any(gen in value_upper for gen in ["5TH", "5TH-GEN"]): |
|
return "NVLink-5" |
|
elif any(gen in value_upper for gen in ["4TH", "4TH-GEN"]): |
|
return "NVLink-4" |
|
else: |
|
return "NVLink" |
|
|
|
if "PCIE" in value_upper: |
|
if "GEN5" in value_upper.replace(" ", ""): |
|
return "PCIe-5" |
|
else: |
|
return "PCIe" |
|
|
|
if "INFINIBAND" in value_upper: |
|
return "InfiniBand" |
|
if "XGMI" in value_upper: |
|
return "XGMI" |
|
|
|
return value |
|
|
|
|
|
def clean_string_values( |
|
df: pl.DataFrame, string_columns: list[str] | None = None |
|
) -> pl.DataFrame: |
|
"""Clean string values in specified columns.""" |
|
if string_columns is None: |
|
string_columns = [col for col in df.columns if df[col].dtype == pl.String] |
|
return df.with_columns( |
|
[ |
|
pl.col(col).map_elements(clean_string_value, return_dtype=str).alias(col) |
|
for col in string_columns |
|
] |
|
) |
|
|
|
|
|
def filter_submissions(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Keep only valid token/s submissions.""" |
|
return df.filter( |
|
(pl.col("metrics.units") == "Tokens/s") |
|
& (pl.col("metrics.result").is_not_null()) |
|
& (pl.col("metrics.result") != 0) |
|
& (pl.col("metrics.result").is_finite()) |
|
& (pl.col("system.accelerator.total_count") > 0) |
|
) |
|
|
|
|
|
def normalize_memory_values(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Convert memory values to GB.""" |
|
return df.with_columns( |
|
[ |
|
pl.col("system.accelerator.memory_capacity") |
|
.map_elements(convert_memory_to_gb, return_dtype=float) |
|
.alias("system.accelerator.memory_capacity"), |
|
pl.col("system.memory.capacity") |
|
.map_elements(convert_memory_to_gb, return_dtype=float) |
|
.alias("system.memory.capacity"), |
|
] |
|
) |
|
|
|
|
|
def normalize_datetime_values(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Convert datetime values to ISO 8601 format.""" |
|
if "datetime" in df.columns: |
|
return df.with_columns( |
|
pl.col("datetime") |
|
.map_elements(convert_datetime_to_iso, return_dtype=str) |
|
.alias("datetime") |
|
) |
|
return df |
|
|
|
|
|
def add_vendor_columns(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Add vendor columns based on model names.""" |
|
return df.with_columns( |
|
[ |
|
pl.col("system.accelerator.name") |
|
.map_elements(extract_accelerator_vendor, return_dtype=str) |
|
.alias("system.accelerator.vendor"), |
|
pl.col("system.cpu.model") |
|
.map_elements(extract_cpu_vendor, return_dtype=str) |
|
.alias("system.cpu.vendor"), |
|
] |
|
) |
|
|
|
|
|
def normalize_interconnect_values(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Normalize interconnect values.""" |
|
return df.with_columns( |
|
[ |
|
pl.col("system.interconnect.accelerator") |
|
.map_elements(normalize_interconnect_type, return_dtype=str) |
|
.alias("system.interconnect.accelerator"), |
|
pl.col("system.interconnect.accelerator_host") |
|
.map_elements(normalize_interconnect_type, return_dtype=str) |
|
.alias("system.interconnect.accelerator_host"), |
|
] |
|
) |
|
|
|
|
|
def extract_framework_columns(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Extract framework versions into separate columns.""" |
|
df_with_id = df.with_columns(pl.Series(name="row_id", values=range(len(df)))) |
|
framework_info = [] |
|
|
|
for idx, framework_str in enumerate(df["software.framework"]): |
|
if framework_str is not None: |
|
for name, version in extract_framework_info(framework_str): |
|
framework_info.append({"row_id": idx, "name": name, "version": version}) |
|
|
|
if not framework_info: |
|
return df |
|
|
|
df_frameworks = pl.DataFrame(framework_info) |
|
df_pivoted = df_frameworks.pivot( |
|
values="version", |
|
index="row_id", |
|
on="name", |
|
aggregate_function="first", |
|
) |
|
|
|
rename_dict = { |
|
col: f"software.framework.{col}" |
|
for col in df_pivoted.columns |
|
if col != "row_id" |
|
} |
|
df_pivoted = df_pivoted.rename(rename_dict) |
|
|
|
return df_with_id.join(df_pivoted, on="row_id", how="left").drop("row_id") |
|
|
|
|
|
def cast_columns(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Cast columns to proper types.""" |
|
column_types = { |
|
"system.cpu.core_count": pl.Int64, |
|
"system.accelerator.count_per_node": pl.Int64, |
|
"system.cpu.count_per_node": pl.Int64, |
|
"system.number_of_nodes": pl.Int64, |
|
} |
|
|
|
df = df.with_columns( |
|
pl.col("system.cpu.frequency") |
|
.map_elements(convert_frequency_to_ghz, return_dtype=float) |
|
.alias("system.cpu.frequency") |
|
) |
|
|
|
return df.cast(column_types) |
|
|
|
|
|
def add_model_parameters(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Add number of parameters column based on model name.""" |
|
model_parameters = { |
|
"llama2-70b": 70, |
|
"llama-2-70b": 70, |
|
"llama3_1-405b": 405, |
|
"llama3_1-70b": 70, |
|
"gptj": 6, |
|
"mixtral-8x7b": 47, |
|
"DeepSeek-R1-Distill-Llama-8B": 8, |
|
"Llama-3.3-70B": 70, |
|
"deepseek-v3": 671, |
|
} |
|
|
|
def extract_parameters(model_name: str) -> float | None: |
|
if not model_name: |
|
return None |
|
for base_name, params in model_parameters.items(): |
|
if model_name.lower().startswith(base_name.lower()): |
|
return float(params) |
|
return None |
|
|
|
return df.with_columns( |
|
pl.col("model.name") |
|
.map_elements(extract_parameters, return_dtype=float) |
|
.alias("model.number_of_parameters") |
|
) |
|
|
|
|
|
def add_model_architecture(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Add model architecture classification.""" |
|
model_architectures = { |
|
"llama": "LLM", |
|
"gpt": "LLM", |
|
"mixtral": "LLM", |
|
"deepseek": "LLM", |
|
"falcon": "LLM", |
|
"mistral": "LLM", |
|
} |
|
|
|
def classify_architecture(model_name: str) -> str | None: |
|
if not model_name: |
|
return None |
|
model_name_lower = model_name.lower() |
|
for pattern, arch in model_architectures.items(): |
|
if pattern in model_name_lower: |
|
return arch |
|
return "Other" |
|
|
|
return df.with_columns( |
|
pl.col("model.name") |
|
.map_elements(classify_architecture, return_dtype=str) |
|
.alias("model.architecture") |
|
) |
|
|
|
|
|
def add_total_accelerator_count(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Compute total number of accelerators.""" |
|
return df.with_columns( |
|
( |
|
pl.col("system.number_of_nodes") |
|
* pl.col("system.accelerator.count_per_node") |
|
).alias("system.accelerator.total_count") |
|
) |
|
|
|
|
|
def add_normalized_performance(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Add performance per accelerator metric.""" |
|
return df.with_columns( |
|
(pl.col("metrics.result") / pl.col("system.accelerator.total_count")).alias( |
|
"metrics.result_per_accelerator" |
|
) |
|
) |
|
|
|
|
|
def sort_columns_alphabetically(df: pl.DataFrame) -> pl.DataFrame: |
|
"""Sort columns alphabetically.""" |
|
return df.select(sorted(df.columns)) |
|
|
|
|
|
def log_missing_values() -> None: |
|
"""Log all collected missing values once.""" |
|
for category, values in MISSING_VALUES.items(): |
|
if values: |
|
logger.warning( |
|
f"Could not determine {len(values)} unique {category}: {sorted(str(v) for v in values)}" |
|
) |
|
|
|
|
|
def upload_to_huggingface_hub( |
|
df: pl.DataFrame, dataset_name: str = "OpenMLPerf", private: bool = True |
|
) -> None: |
|
"""Upload the processed dataset to HuggingFace Hub.""" |
|
logger.info(f"Preparing dataset '{dataset_name}' for upload to HuggingFace Hub") |
|
data_dict = {col: df[col].to_list() for col in df.columns} |
|
dataset = Dataset.from_dict(data_dict) |
|
|
|
try: |
|
dataset.push_to_hub(dataset_name, private=private) |
|
logger.info( |
|
f"Successfully uploaded dataset to HuggingFace Hub as '{dataset_name}'" |
|
) |
|
except Exception as e: |
|
logger.error(f"Failed to upload dataset to HuggingFace Hub: {e}") |
|
|
|
|
|
def process_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame: |
|
"""Main data processing pipeline.""" |
|
logger.info("Starting data processing pipeline") |
|
|
|
MISSING_VALUES.clear() |
|
|
|
df = ( |
|
load_raw_data(base_path) |
|
.pipe(clean_string_values) |
|
.pipe(normalize_memory_values) |
|
.pipe(normalize_datetime_values) |
|
.pipe(cast_columns) |
|
.pipe(add_vendor_columns) |
|
.pipe(normalize_interconnect_values) |
|
.pipe(extract_framework_columns) |
|
.pipe(add_model_parameters) |
|
.pipe(add_model_architecture) |
|
.pipe(add_total_accelerator_count) |
|
.pipe(add_normalized_performance) |
|
.pipe(sort_columns_alphabetically) |
|
.pipe(filter_submissions) |
|
) |
|
|
|
log_missing_values() |
|
|
|
logger.info(f"Processed {len(df)} records") |
|
return df |
|
|
|
|
|
def export_data(df: pl.DataFrame) -> None: |
|
"""Export processed data to JSON file.""" |
|
with open("data.json", "w") as f: |
|
json.dump(df.to_dicts(), f, indent=2) |
|
logger.info("Exported data to data.json") |
|
df.write_parquet("data.parquet") |
|
logger.info("Exported data to data.parquet") |
|
|
|
|
|
def main( |
|
base_path: str = "semi-raw-mlperf-data", |
|
upload_to_hub: bool = False, |
|
dataset_name: str = "OpenMLPerf", |
|
push_to_hub: bool = True, |
|
private: bool = True, |
|
): |
|
"""Run the complete data processing pipeline.""" |
|
logging.basicConfig(level=logging.INFO) |
|
df = process_data(base_path) |
|
export_data(df) |
|
|
|
if upload_to_hub: |
|
upload_to_huggingface_hub(df, dataset_name, private) |
|
|
|
return df |
|
|
|
|
|
if __name__ == "__main__": |
|
main(upload_to_hub=False, private=True) |
|
|