Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2011 /round1c /polynomial_factoring.html
wjomlex's picture
2011 Problems
df6dd12 verified
raw
history blame
1.72 kB
A polynomial in <tt>x</tt> of degree <b>D</b> can be written as:
<pre>
a<sub>D</sub>x<sup>D</sup> + a<sub>D-1</sub>x<sup>D-1</sup> + ... + a<sub>1</sub>x<sup>1</sup> + a<sub>0</sub>
</pre>
In some cases, a polynomial of degree <tt><b>D</b></tt> can also be written as the product of two polynomials of degrees <tt><b>D<sub>1</sub></b></tt> and <tt><b>D<sub>2</sub></b></tt>, where <tt><b>D = D<sub>1</sub> + D<sub>2</sub></b></tt>. For instance,
<pre>4 x<sup>2</sup> + 11 x <sup>1</sup> + 6 = (4 x<sup>1</sup> + 3) * (1 x<sup>1</sup> + 2)</pre>
In this problem, you will be given two polynomials, denoted <tt><b>F</b></tt> and <tt><b>G</b></tt>. Your task is to find a polynomial <tt><b>H</b></tt> such that <tt><b>G</b> * <b>H</b> = <b>F</b></tt>, and each <tt>a<sub>i</sub></tt> is an integer.
<h2>Input</h2>
You should first read an integer <tt><b>N &le; 60</b></tt>, the number of test cases. Each test case will start by describing <tt><b>F</b></tt> and then describe <tt><b>G</b></tt>. Each polynomial will start with its degree <tt>0 &le; <b>D</b> &le; 20</tt>, which will be followed by <tt><b>D</b>+1</tt> integers, denoting <tt>a<sub>0</sub>, a<sub>1</sub>, ... , a<sub>D</sub></tt>, where <tt>-10000 &le; a<sub>i</sub> &le; 10000</tt>. Each polynomial will have a non-zero coefficient for it's highest order term.
<h2>Output</h2>
For each test case, output a single line describing <tt><b>H</b></tt>. If <tt><b>H</b></tt> has degree <tt><b>D<sub>H</sub></b></tt>, you should output a line containing <tt><b>D<sub>H</sub></b> + 1</tt> integers, starting with <tt>a<sub>0</sub></tt> for <tt><b>H</b></tt>. If no <tt><b>H</b></tt> exists such that <tt><b>G*H=F</b></tt>, you should output "no solution".