|
|
|
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <bitset>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
#define LL long long
|
|
#define LD long double
|
|
#define PR pair<int,int>
|
|
|
|
#define Fox(i,n) for (i=0; i<n; i++)
|
|
#define Fox1(i,n) for (i=1; i<=n; i++)
|
|
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
|
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
|
#define FoxR1(i,n) for (i=n; i>0; i--)
|
|
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
|
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
|
#define Min(a,b) a=min(a,b)
|
|
#define Max(a,b) a=max(a,b)
|
|
#define Sz(s) int((s).size())
|
|
#define All(s) (s).begin(),(s).end()
|
|
#define Fill(s,v) memset(s,v,sizeof(s))
|
|
#define pb push_back
|
|
#define mp make_pair
|
|
#define x first
|
|
#define y second
|
|
|
|
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
|
|
template<typename T> T Sqr(T x) { return(x*x); }
|
|
|
|
const int INF = (int)1e9;
|
|
const LD EPS = 1e-10;
|
|
const LD PI = acos(-1.0);
|
|
|
|
bool Read(int &x)
|
|
{
|
|
char c,r=0,n=0;
|
|
x=0;
|
|
for(;;)
|
|
{
|
|
c=getchar();
|
|
if ((c<0) && (!r))
|
|
return(0);
|
|
if ((c=='-') && (!r))
|
|
n=1;
|
|
else
|
|
if ((c>='0') && (c<='9'))
|
|
x=x*10+c-'0',r=1;
|
|
else
|
|
if (r)
|
|
break;
|
|
}
|
|
if (n)
|
|
x=-x;
|
|
return(1);
|
|
}
|
|
|
|
#define LIM 800001
|
|
|
|
pair<int,LD> O[LIM],P[LIM];
|
|
LD mx[LIM];
|
|
vector<int> ch[LIM];
|
|
int ss,st[LIM];
|
|
|
|
LD Calc(LD h,LD a1,LD a2)
|
|
{
|
|
return(-h*(log(cos(a2))-log(cos(a1))));
|
|
}
|
|
|
|
int main()
|
|
{
|
|
|
|
int T,t;
|
|
int N;
|
|
bool D[2];
|
|
LD A[2];
|
|
int i,j,c,p,w,z;
|
|
double v;
|
|
LD a,a1,a2,tot,ans[2];
|
|
|
|
Read(T);
|
|
Fox1(t,T)
|
|
{
|
|
|
|
Read(N);
|
|
Fox(i,2)
|
|
{
|
|
Read(j);
|
|
D[i]=int(j<0);
|
|
A[i]=j*PI/180;
|
|
}
|
|
Fox(i,N)
|
|
{
|
|
scanf("%d%lf",&O[i].x,&v);
|
|
O[i].y=v;
|
|
}
|
|
|
|
Fox(z,2)
|
|
{
|
|
|
|
memcpy(P,O,sizeof(P));
|
|
if (D[z])
|
|
Fox(i,N)
|
|
P[i].x=-P[i].x;
|
|
|
|
sort(P,P+N);
|
|
|
|
Fox(i,N+1)
|
|
ch[i].clear();
|
|
|
|
ss=0;
|
|
Fox(i,N)
|
|
{
|
|
|
|
while (ss>0)
|
|
{
|
|
j=st[ss-1];
|
|
a=atan2(P[i].x-P[j].x,P[j].y-P[i].y);
|
|
if (a<mx[j]-EPS)
|
|
break;
|
|
ss--;
|
|
}
|
|
if (!ss)
|
|
{
|
|
mx[i]=Abs(A[z]);
|
|
ch[N].pb(i);
|
|
}
|
|
else
|
|
{
|
|
mx[i]=a;
|
|
ch[j].pb(i);
|
|
}
|
|
st[ss++]=i;
|
|
}
|
|
|
|
Fox(j,Sz(ch[N])-1)
|
|
ch[ch[N][j]].pb(ch[N][j+1]);
|
|
Fox(i,N)
|
|
Fox(j,Sz(ch[i])-1)
|
|
ch[ch[i][j]].pb(ch[i][j+1]);
|
|
|
|
ans[z]=0;
|
|
Fox(i,N)
|
|
{
|
|
a=0;
|
|
Fox(c,Sz(ch[i]))
|
|
{
|
|
j=ch[i][c];
|
|
a1=max(a,atan2(P[j].x-P[i].x,P[i].y));
|
|
a2=atan2(P[j].x-P[i].x,P[i].y-P[j].y);
|
|
|
|
if (a1>mx[i]-EPS)
|
|
break;
|
|
ans[z]+=Calc(P[i].y,a,a1);
|
|
|
|
w=P[j].x-P[i].x;
|
|
if (a2>mx[i]-EPS)
|
|
{
|
|
ans[z]+=w*(mx[i]-a1);
|
|
goto Done;
|
|
}
|
|
ans[z]+=w*(a2-a1);
|
|
a=a2;
|
|
}
|
|
ans[z]+=Calc(P[i].y,a,mx[i]);
|
|
Done:;
|
|
}
|
|
}
|
|
|
|
if (D[0]==D[1])
|
|
tot=Abs(ans[0]-ans[1]);
|
|
else
|
|
tot=ans[0]+ans[1];
|
|
tot/=A[1]-A[0];
|
|
|
|
printf("Case #%d: %.9lf\n",t,(double)tot);
|
|
}
|
|
return(0);
|
|
} |