// Hacker Cup 2017 // Final Round // Fox Poles // Jacob Plachta #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x<0 ? -x : x); } template T Sqr(T x) { return(x*x); } const int INF = (int)1e9; const LD EPS = 1e-10; const LD PI = acos(-1.0); bool Read(int &x) { char c,r=0,n=0; x=0; for(;;) { c=getchar(); if ((c<0) && (!r)) return(0); if ((c=='-') && (!r)) n=1; else if ((c>='0') && (c<='9')) x=x*10+c-'0',r=1; else if (r) break; } if (n) x=-x; return(1); } #define LIM 800001 pair O[LIM],P[LIM]; LD mx[LIM]; vector ch[LIM]; int ss,st[LIM]; LD Calc(LD h,LD a1,LD a2) { return(-h*(log(cos(a2))-log(cos(a1)))); } int main() { // vars int T,t; int N; bool D[2]; LD A[2]; int i,j,c,p,w,z; double v; LD a,a1,a2,tot,ans[2]; // testcase loop Read(T); Fox1(t,T) { // input Read(N); Fox(i,2) { Read(j); D[i]=int(j<0); A[i]=j*PI/180; } Fox(i,N) { scanf("%d%lf",&O[i].x,&v); O[i].y=v; } // consider each direction Fox(z,2) { // reverse poles horizontally if necessary memcpy(P,O,sizeof(P)); if (D[z]) Fox(i,N) P[i].x=-P[i].x; // sort poles left-to-right sort(P,P+N); // init Fox(i,N+1) ch[i].clear(); // consider poles left-to-right, constructing convex hull of coverage ss=0; Fox(i,N) { // find this pole's parent, if any while (ss>0) { j=st[ss-1]; a=atan2(P[i].x-P[j].x,P[j].y-P[i].y); if (amx[i]-EPS) break; ans[z]+=Calc(P[i].y,a,a1); // full shadow until top w=P[j].x-P[i].x; if (a2>mx[i]-EPS) { ans[z]+=w*(mx[i]-a1); goto Done; } ans[z]+=w*(a2-a1); a=a2; } ans[z]+=Calc(P[i].y,a,mx[i]); Done:; } } // compute answer if (D[0]==D[1]) tot=Abs(ans[0]-ans[1]); else tot=ans[0]+ans[1]; tot/=A[1]-A[0]; // output printf("Case #%d: %.9lf\n",t,(double)tot); } return(0); }