Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
Portuguese
Size:
10K - 100K
License:
File size: 1,805 Bytes
009b302 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
task_categories:
- text-classification
language:
- pt
tags:
- NLI
- datasets
pretty_name: InferBR
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: sentence_pair_id
dtype: int64
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': CONTRADICTION
'1': ENTAILMENT
'2': NEUTRAL
---
# InferBR
This is the InferBR dataset for Natural Language Inference in Portuguese. This version removes the flagged low-quality samples from the original dataset,
keeping 10.528 samples. The Github repo with the raw data can be found at: https://github.com/lbencke/InferBR.
## Columns
**sentence_pair_id**: Identifier for premise-hypothesis sentence pairs.
**premise**: The premise sentence.
**hypothesis**: The hypothesis sentence.
**label**: The generated label for the hypothesis considering the premise.
0 – Contradiction
1 – Entailment
2 – Neutral
# Citation
@inproceedings{bencke-etal-2024-inferbr-natural,
title = "{I}nfer{BR}: A Natural Language Inference Dataset in {P}ortuguese",
author = "Bencke, Luciana and
Pereira, Francielle Vasconcellos and
Santos, Moniele Kunrath and
Moreira, Viviane",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italy",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.793",
pages = "9050--9060",
} |