QwenImageTransformer2DModel

The model can be loaded with the following code snippet.

from diffusers import QwenImageTransformer2DModel

transformer = QwenImageTransformer2DModel.from_pretrained("Qwen/QwenImage-20B", subfolder="transformer", torch_dtype=torch.bfloat16)

QwenImageTransformer2DModel

class diffusers.QwenImageTransformer2DModel

< >

( patch_size: int = 2 in_channels: int = 64 out_channels: typing.Optional[int] = 16 num_layers: int = 60 attention_head_dim: int = 128 num_attention_heads: int = 24 joint_attention_dim: int = 3584 guidance_embeds: bool = False axes_dims_rope: typing.Tuple[int, int, int] = (16, 56, 56) )

Parameters

  • patch_size (int, defaults to 2) — Patch size to turn the input data into small patches.
  • in_channels (int, defaults to 64) — The number of channels in the input.
  • out_channels (int, optional, defaults to None) — The number of channels in the output. If not specified, it defaults to in_channels.
  • num_layers (int, defaults to 60) — The number of layers of dual stream DiT blocks to use.
  • attention_head_dim (int, defaults to 128) — The number of dimensions to use for each attention head.
  • num_attention_heads (int, defaults to 24) — The number of attention heads to use.
  • joint_attention_dim (int, defaults to 3584) — The number of dimensions to use for the joint attention (embedding/channel dimension of encoder_hidden_states).
  • guidance_embeds (bool, defaults to False) — Whether to use guidance embeddings for guidance-distilled variant of the model.
  • axes_dims_rope (Tuple[int], defaults to (16, 56, 56)) — The dimensions to use for the rotary positional embeddings.

The Transformer model introduced in Qwen.

forward

< >

( hidden_states: Tensor encoder_hidden_states: Tensor = None encoder_hidden_states_mask: Tensor = None timestep: LongTensor = None img_shapes: typing.Optional[typing.List[typing.Tuple[int, int, int]]] = None txt_seq_lens: typing.Optional[typing.List[int]] = None guidance: Tensor = None attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None return_dict: bool = True )

Parameters

  • hidden_states (torch.Tensor of shape (batch_size, image_sequence_length, in_channels)) — Input hidden_states.
  • encoder_hidden_states (torch.Tensor of shape (batch_size, text_sequence_length, joint_attention_dim)) — Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
  • encoder_hidden_states_mask (torch.Tensor of shape (batch_size, text_sequence_length)) — Mask of the input conditions.
  • timestep ( torch.LongTensor) — Used to indicate denoising step.
  • attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a ~models.transformer_2d.Transformer2DModelOutput instead of a plain tuple.

The QwenTransformer2DModel forward method.

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

Parameters

  • sample (torch.Tensor of shape (batch_size, num_channels, height, width) or (batch size, num_vector_embeds - 1, num_latent_pixels) if Transformer2DModel is discrete) — The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

The output of Transformer2DModel.

< > Update on GitHub