The DepthPro model was proposed in Depth Pro: Sharp Monocular Metric Depth in Less Than a Second by Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, Vladlen Koltun.
DepthPro is a foundation model for zero-shot metric monocular depth estimation, designed to generate high-resolution depth maps with remarkable sharpness and fine-grained details. It employs a multi-scale Vision Transformer (ViT)-based architecture, where images are downsampled, divided into patches, and processed using a shared Dinov2 encoder. The extracted patch-level features are merged, upsampled, and refined using a DPT-like fusion stage, enabling precise depth estimation.
The abstract from the paper is the following:
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions.
This model was contributed by geetu040. The original code can be found here.
The DepthPro model processes an input image by first downsampling it at multiple scales and splitting each scaled version into patches. These patches are then encoded using a shared Vision Transformer (ViT)-based Dinov2 patch encoder, while the full image is processed by a separate image encoder. The extracted patch features are merged into feature maps, upsampled, and fused using a DPT-like decoder to generate the final depth estimation. If enabled, an additional Field of View (FOV) encoder processes the image for estimating the camera’s field of view, aiding in depth accuracy.
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
>>> model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
>>> inputs = image_processor(images=image, return_tensors="pt").to(device)
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs, target_sizes=[(image.height, image.width)],
... )
>>> field_of_view = post_processed_output[0]["field_of_view"]
>>> focal_length = post_processed_output[0]["focal_length"]
>>> depth = post_processed_output[0]["predicted_depth"]
>>> depth = (depth - depth.min()) / depth.max()
>>> depth = depth * 255.
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
The DepthProForDepthEstimation
model uses a DepthProEncoder
, for encoding the input image and a FeatureFusionStage
for fusing the output features from encoder.
The DepthProEncoder
further uses two encoders:
patch_encoder
scaled_images_ratios
configuration.patch_size
with overlapping areas determined by scaled_images_overlap_ratios
.patch_encoder
image_encoder
patch_size
and processed by the image_encoder
Both these encoders can be configured via patch_model_config
and image_model_config
respectively, both of which are seperate Dinov2Model
by default.
Outputs from both encoders (last_hidden_state
) and selected intermediate states (hidden_states
) from patch_encoder
are fused by a DPT
-based FeatureFusionStage
for depth estimation.
The network is supplemented with a focal length estimation head. A small convolutional head ingests frozen features from the depth estimation network and task-specific features from a separate ViT image encoder to predict the horizontal angular field-of-view.
The use_fov_model
parameter in DepthProConfig
controls whether FOV prediction is enabled. By default, it is set to False
to conserve memory and computation. When enabled, the FOV encoder is instantiated based on the fov_model_config
parameter, which defaults to a Dinov2Model
. The use_fov_model
parameter can also be passed when initializing the DepthProForDepthEstimation
model.
The pretrained model at checkpoint apple/DepthPro-hf
uses the FOV encoder. To use the pretrained-model without FOV encoder, set use_fov_model=False
when loading the model, which saves computation.
>>> from transformers import DepthProForDepthEstimation
>>> model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf", use_fov_model=False)
To instantiate a new model with FOV encoder, set use_fov_model=True
in the config.
>>> from transformers import DepthProConfig, DepthProForDepthEstimation
>>> config = DepthProConfig(use_fov_model=True)
>>> model = DepthProForDepthEstimation(config)
Or set use_fov_model=True
when initializing the model, which overrides the value in config.
>>> from transformers import DepthProConfig, DepthProForDepthEstimation
>>> config = DepthProConfig()
>>> model = DepthProForDepthEstimation(config, use_fov_model=True)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of torch.nn.functional
. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
official documentation
or the GPU Inference
page for more information.
SDPA is used by default for torch>=2.1.1
when an implementation is available, but you may also set
attn_implementation="sdpa"
in from_pretrained()
to explicitly request SDPA to be used.
from transformers import DepthProForDepthEstimation
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf", attn_implementation="sdpa", torch_dtype=torch.float16)
For the best speedups, we recommend loading the model in half-precision (e.g. torch.float16
or torch.bfloat16
).
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with float32
and google/vit-base-patch16-224
model, we saw the following speedups during inference.
Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
---|---|---|---|
1 | 7 | 6 | 1.17 |
2 | 8 | 6 | 1.33 |
4 | 8 | 6 | 1.33 |
8 | 8 | 6 | 1.33 |
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DepthPro:
If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
( fusion_hidden_size = 256 patch_size = 384 initializer_range = 0.02 intermediate_hook_ids = [11, 5] intermediate_feature_dims = [256, 256] scaled_images_ratios = [0.25, 0.5, 1] scaled_images_overlap_ratios = [0.0, 0.5, 0.25] scaled_images_feature_dims = [1024, 1024, 512] merge_padding_value = 3 use_batch_norm_in_fusion_residual = False use_bias_in_fusion_residual = True use_fov_model = False num_fov_head_layers = 2 image_model_config = None patch_model_config = None fov_model_config = None **kwargs )
Parameters
int
, optional, defaults to 256) —
The number of channels before fusion. int
, optional, defaults to 384) —
The size (resolution) of each patch. This is also the image_size for backbone model. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. List[int]
, optional, defaults to [11, 5]
) —
Indices of the intermediate hidden states from the patch encoder to use for fusion. List[int]
, optional, defaults to [256, 256]
) —
Hidden state dimensions during upsampling for each intermediate hidden state in intermediate_hook_ids
. List[float]
, optional, defaults to [0.25, 0.5, 1]
) —
Ratios of scaled images to be used by the patch encoder. List[float]
, optional, defaults to [0.0, 0.5, 0.25]
) —
Overlap ratios between patches for each scaled image in scaled_images_ratios
. List[int]
, optional, defaults to [1024, 1024, 512]
) —
Hidden state dimensions during upsampling for each scaled image in scaled_images_ratios
. int
, optional, defaults to 3) —
When merging smaller patches back to the image size, overlapping sections of this size are removed. bool
, optional, defaults to False
) —
Whether to use batch normalization in the pre-activate residual units of the fusion blocks. bool
, optional, defaults to True
) —
Whether to use bias in the pre-activate residual units of the fusion blocks. bool
, optional, defaults to False
) —
Whether to use DepthProFovModel
to generate the field of view. int
, optional, defaults to 2) —
Number of convolution layers in the head of DepthProFovModel
. Union[Dict[str, Any], PretrainedConfig]
, optional) —
The configuration of the image encoder model, which is loaded using the AutoModel API.
By default, Dinov2 model is used as backbone. Union[Dict[str, Any], PretrainedConfig]
, optional) —
The configuration of the patch encoder model, which is loaded using the AutoModel API.
By default, Dinov2 model is used as backbone. Union[Dict[str, Any], PretrainedConfig]
, optional) —
The configuration of the fov encoder model, which is loaded using the AutoModel API.
By default, Dinov2 model is used as backbone. This is the configuration class to store the configuration of a DepthProModel. It is used to instantiate a DepthPro model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DepthPro apple/DepthPro architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import DepthProConfig, DepthProModel
>>> # Initializing a DepthPro apple/DepthPro style configuration
>>> configuration = DepthProConfig()
>>> # Initializing a model (with random weights) from the apple/DepthPro style configuration
>>> model = DepthProModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( do_resize: bool = True size: typing.Optional[typing.Dict[str, int]] = None resample: Resampling = <Resampling.BILINEAR: 2> do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None **kwargs )
Parameters
bool
, optional, defaults to True
) —
Whether to resize the image’s (height, width) dimensions to the specified (size["height"], size["width"])
. Can be overridden by the do_resize
parameter in the preprocess
method. dict
, optional, defaults to {"height" -- 1536, "width": 1536}
):
Size of the output image after resizing. Can be overridden by the size
parameter in the preprocess
method. PILImageResampling
, optional, defaults to Resampling.BILINEAR
) —
Resampling filter to use if resizing the image. Can be overridden by the resample
parameter in the
preprocess
method. bool
, optional, defaults to True
) —
Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by the do_rescale
parameter in the preprocess
method. int
or float
, optional, defaults to 1/255
) —
Scale factor to use if rescaling the image. Can be overridden by the rescale_factor
parameter in the
preprocess
method. bool
, optional, defaults to True
) —
Whether to normalize the image. Can be overridden by the do_normalize
parameter in the preprocess
method. float
or List[float]
, optional, defaults to IMAGENET_STANDARD_MEAN
) —
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method. float
or List[float]
, optional, defaults to IMAGENET_STANDARD_STD
) —
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method. Constructs a DepthPro image processor.
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: typing.Optional[bool] = None size: typing.Optional[typing.Dict[str, int]] = None resample: typing.Optional[PIL.Image.Resampling] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )
Parameters
ImageInput
) —
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set do_rescale=False
. bool
, optional, defaults to self.do_resize
) —
Whether to resize the image. Dict[str, int]
, optional, defaults to self.size
) —
Dictionary in the format {"height": h, "width": w}
specifying the size of the output image after
resizing. PILImageResampling
filter, optional, defaults to self.resample
) —
PILImageResampling
filter to use if resizing the image e.g. PILImageResampling.BILINEAR
. Only has
an effect if do_resize
is set to True
. bool
, optional, defaults to self.do_rescale
) —
Whether to rescale the image values between [0 - 1]. float
, optional, defaults to self.rescale_factor
) —
Rescale factor to rescale the image by if do_rescale
is set to True
. bool
, optional, defaults to self.do_normalize
) —
Whether to normalize the image. float
or List[float]
, optional, defaults to self.image_mean
) —
Image mean to use if do_normalize
is set to True
. float
or List[float]
, optional, defaults to self.image_std
) —
Image standard deviation to use if do_normalize
is set to True
. str
or TensorType
, optional) —
The type of tensors to return. Can be one of:np.ndarray
.TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) —
The channel dimension format for the output image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.ChannelDimension
or str
, optional) —
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format."none"
or ChannelDimension.NONE
: image in (height, width) format.Preprocess an image or batch of images.
( outputs: DepthProDepthEstimatorOutput target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple[int, int]], NoneType] = None ) → List[Dict[str, TensorType]]
Parameters
DepthProDepthEstimatorOutput
) —
Raw outputs of the model. Optional[Union[TensorType, List[Tuple[int, int]], None]]
, optional, defaults to None
) —
Target sizes to resize the depth predictions. Can be a tensor of shape (batch_size, 2)
or a list of tuples (height, width)
for each image in the batch. If None
, no resizing
is performed. Returns
List[Dict[str, TensorType]]
A list of dictionaries of tensors representing the processed depth
predictions, and field of view (degrees) and focal length (pixels) if field_of_view
is given in outputs
.
Raises
ValueError
ValueError
—
If the lengths of predicted_depths
, fovs
, or target_sizes
are mismatched.Post-processes the raw depth predictions from the model to generate final depth predictions which is caliberated using the field of view if provided and resized to specified target sizes if provided.
( **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorInitKwargs] )
Parameters
bool
, optional, defaults to self.do_resize
) —
Whether to resize the image’s (height, width) dimensions to the specified size
. Can be overridden by the
do_resize
parameter in the preprocess
method. dict
, optional, defaults to self.size
) —
Size of the output image after resizing. Can be overridden by the size
parameter in the preprocess
method. bool
, optional, defaults to self.default_to_square
) —
Whether to default to a square image when resizing, if size is an int. PILImageResampling
, optional, defaults to self.resample
) —
Resampling filter to use if resizing the image. Only has an effect if do_resize
is set to True
. Can be
overridden by the resample
parameter in the preprocess
method. bool
, optional, defaults to self.do_center_crop
) —
Whether to center crop the image to the specified crop_size
. Can be overridden by do_center_crop
in the
preprocess
method. Dict[str, int]
optional, defaults to self.crop_size
) —
Size of the output image after applying center_crop
. Can be overridden by crop_size
in the preprocess
method. bool
, optional, defaults to self.do_rescale
) —
Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by the
do_rescale
parameter in the preprocess
method. int
or float
, optional, defaults to self.rescale_factor
) —
Scale factor to use if rescaling the image. Only has an effect if do_rescale
is set to True
. Can be
overridden by the rescale_factor
parameter in the preprocess
method. bool
, optional, defaults to self.do_normalize
) —
Whether to normalize the image. Can be overridden by the do_normalize
parameter in the preprocess
method. Can be overridden by the do_normalize
parameter in the preprocess
method. float
or List[float]
, optional, defaults to self.image_mean
) —
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method. Can be
overridden by the image_mean
parameter in the preprocess
method. float
or List[float]
, optional, defaults to self.image_std
) —
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method.
Can be overridden by the image_std
parameter in the preprocess
method. bool
, optional, defaults to self.image_std
) —
Whether to convert the image to RGB. Constructs a fast DepthPro image processor.
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorPreprocessKwargs] )
Parameters
ImageInput
) —
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set do_rescale=False
. bool
, optional, defaults to self.do_resize
) —
Whether to resize the image. Dict[str, int]
, optional, defaults to self.size
) —
Describes the maximum input dimensions to the model. PILImageResampling
or InterpolationMode
, optional, defaults to self.resample
) —
Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling
. Only
has an effect if do_resize
is set to True
. bool
, optional, defaults to self.do_center_crop
) —
Whether to center crop the image. Dict[str, int]
, optional, defaults to self.crop_size
) —
Size of the output image after applying center_crop
. bool
, optional, defaults to self.do_rescale
) —
Whether to rescale the image. float
, optional, defaults to self.rescale_factor
) —
Rescale factor to rescale the image by if do_rescale
is set to True
. bool
, optional, defaults to self.do_normalize
) —
Whether to normalize the image. float
or List[float]
, optional, defaults to self.image_mean
) —
Image mean to use for normalization. Only has an effect if do_normalize
is set to True
. float
or List[float]
, optional, defaults to self.image_std
) —
Image standard deviation to use for normalization. Only has an effect if do_normalize
is set to
True
. bool
, optional, defaults to self.do_convert_rgb
) —
Whether to convert the image to RGB. str
or TensorType
, optional) —
Returns stacked tensors if set to `pt, otherwise returns a list of tensors. ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) —
The channel dimension format for the output image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.ChannelDimension
or str
, optional) —
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format."none"
or ChannelDimension.NONE
: image in (height, width) format.torch.device
, optional) —
The device to process the images on. If unset, the device is inferred from the input images. Preprocess an image or batch of images.
( outputs: DepthProDepthEstimatorOutput target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple[int, int]], NoneType] = None ) → List[Dict[str, TensorType]]
Parameters
DepthProDepthEstimatorOutput
) —
Raw outputs of the model. Optional[Union[TensorType, List[Tuple[int, int]], None]]
, optional, defaults to None
) —
Target sizes to resize the depth predictions. Can be a tensor of shape (batch_size, 2)
or a list of tuples (height, width)
for each image in the batch. If None
, no resizing
is performed. Returns
List[Dict[str, TensorType]]
A list of dictionaries of tensors representing the processed depth
predictions, and field of view (degrees) and focal length (pixels) if field_of_view
is given in outputs
.
Raises
ValueError
ValueError
—
If the lengths of predicted_depths
, fovs
, or target_sizes
are mismatched.Post-processes the raw depth predictions from the model to generate final depth predictions which is caliberated using the field of view if provided and resized to specified target sizes if provided.
( config )
Parameters
The bare DepthPro Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: FloatTensor head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Pixel values can be obtained using AutoImageProcessor. See DPTImageProcessor.call()
for details. torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (DepthProConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The DepthProModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, DepthProModel
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> checkpoint = "apple/DepthPro-hf"
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> model = DepthProModel.from_pretrained(checkpoint)
>>> # prepare image for the model
>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... output = model(**inputs)
>>> output.last_hidden_state.shape
torch.Size([1, 35, 577, 1024])
( config use_fov_model = None )
Parameters
bool
, optional, defaults to True
) —
Whether to use DepthProFovModel
to generate the field of view. DepthPro Model with a depth estimation head on top (consisting of 3 convolutional layers).
This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: FloatTensor head_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Pixel values can be obtained using AutoImageProcessor. See DPTImageProcessor.call()
for details. torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, height, width)
, optional) —
Ground truth depth estimation maps for computing the loss. Returns
transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput
or tuple(torch.FloatTensor)
A transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (DepthProConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
predicted_depth (torch.FloatTensor
of shape (batch_size, height, width)
) — Predicted depth for each pixel.
field_of_view (torch.FloatTensor
of shape (batch_size,)
, optional, returned when use_fov_model
is provided) — Field of View Scaler.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, n_patches_per_batch, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer and the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, n_patches_per_batch, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The DepthProForDepthEstimation forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoImageProcessor, DepthProForDepthEstimation
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> checkpoint = "apple/DepthPro-hf"
>>> processor = AutoImageProcessor.from_pretrained(checkpoint)
>>> model = DepthProForDepthEstimation.from_pretrained(checkpoint)
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> model.to(device)
>>> # prepare image for the model
>>> inputs = processor(images=image, return_tensors="pt").to(device)
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = processor.post_process_depth_estimation(
... outputs, target_sizes=[(image.height, image.width)],
... )
>>> # get the field of view (fov) predictions
>>> field_of_view = post_processed_output[0]["field_of_view"]
>>> focal_length = post_processed_output[0]["focal_length"]
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))