huanqia commited on
Commit
d1c4e6f
·
verified ·
1 Parent(s): a39bdb0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -20
README.md CHANGED
@@ -14,22 +14,21 @@ size_categories:
14
  license: apache-2.0
15
  pretty_name: mmiq
16
  ---
17
- # Dataset Card for "MMIQ"
18
-
19
- - [Dataset Description](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-description)
20
- - [Paper Information](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#paper-information)
21
- - [Dataset Examples](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-examples)
22
- - [Leaderboard](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#leaderboard)
23
- - [Dataset Usage](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-usage)
24
- - [Data Downloading](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-downloading)
25
- - [Data Format](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-format)
26
- - [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#automatic-evaluation)
27
- - [License](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#license)
28
- - [Citation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#citation)
29
 
30
  ## Dataset Description
31
 
32
- **MMIQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MMIQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MMIQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
33
  <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
34
 
35
 
@@ -44,7 +43,7 @@ pretty_name: mmiq
44
 
45
  ## Dataset Examples
46
 
47
- Examples of our MMIQ:
48
  1. Logical Operation Reasoning
49
 
50
  <p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
@@ -87,7 +86,7 @@ Examples of our MMIQ:
87
 
88
  ## Leaderboard
89
 
90
- 🏆 The leaderboard for the *MMIQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
91
 
92
 
93
  ## Dataset Usage
@@ -100,13 +99,13 @@ You can download this dataset by the following command (make sure that you have
100
  ```python
101
  from datasets import load_dataset
102
 
103
- dataset = load_dataset("huanqia/MMIQ")
104
  ```
105
 
106
  Here are some examples of how to access the downloaded dataset:
107
 
108
  ```python
109
- # print the first example on the MMIQ dataset
110
  print(dataset[0])
111
  print(dataset[0]['data_id']) # print the problem id
112
  print(dataset[0]['question']) # print the question text
@@ -135,10 +134,10 @@ The dataset is provided in json format and contains the following attributes:
135
 
136
  ## Citation
137
 
138
- If you use the **MMIQ** dataset in your work, please kindly cite the paper using this BibTeX:
139
  ```
140
- @misc{cai2025mmiq,
141
- title = {MMIQ: Are Your Multimodal Large Language Models Smart Enough?},
142
  author = {Huanqia, Cai and Yijun Yang and Winston Hu},
143
  month = {January},
144
  year = {2025}
 
14
  license: apache-2.0
15
  pretty_name: mmiq
16
  ---
17
+ # Dataset Card for "MM-IQ"
18
+
19
+ - [Dataset Description](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-description)
20
+ - [Paper Information](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#paper-information)
21
+ - [Dataset Examples](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-examples)
22
+ - [Leaderboard](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#leaderboard)
23
+ - [Dataset Usage](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#dataset-usage)
24
+ - [Data Downloading](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#data-downloading)
25
+ - [Data Format](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#data-format)
26
+ - [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#automatic-evaluation)
27
+ - [Citation](https://huggingface.co/datasets/huanqia/MM-IQ/blob/main/README.md#citation)
 
28
 
29
  ## Dataset Description
30
 
31
+ **MM-IQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MM-IQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MM-IQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
32
  <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
33
 
34
 
 
43
 
44
  ## Dataset Examples
45
 
46
+ Examples of our MM-IQ:
47
  1. Logical Operation Reasoning
48
 
49
  <p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
 
86
 
87
  ## Leaderboard
88
 
89
+ 🏆 The leaderboard for the *MM-IQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
90
 
91
 
92
  ## Dataset Usage
 
99
  ```python
100
  from datasets import load_dataset
101
 
102
+ dataset = load_dataset("huanqia/MM-IQ")
103
  ```
104
 
105
  Here are some examples of how to access the downloaded dataset:
106
 
107
  ```python
108
+ # print the first example on the MM-IQ dataset
109
  print(dataset[0])
110
  print(dataset[0]['data_id']) # print the problem id
111
  print(dataset[0]['question']) # print the question text
 
134
 
135
  ## Citation
136
 
137
+ If you use the **MM-IQ** dataset in your work, please kindly cite the paper using this BibTeX:
138
  ```
139
+ @misc{cai2025mm-iq,
140
+ title = {MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models},
141
  author = {Huanqia, Cai and Yijun Yang and Winston Hu},
142
  month = {January},
143
  year = {2025}