Datasets:
Update terramesh.py
Browse files- terramesh.py +61 -31
terramesh.py
CHANGED
@@ -19,11 +19,8 @@
|
|
19 |
import os
|
20 |
import io
|
21 |
import re
|
22 |
-
|
23 |
-
import numpy
|
24 |
import zarr
|
25 |
import fsspec
|
26 |
-
import itertools
|
27 |
import braceexpand
|
28 |
import numpy as np
|
29 |
import albumentations
|
@@ -52,10 +49,11 @@ split_files = {
|
|
52 |
|
53 |
def build_terramesh_dataset(
|
54 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
55 |
-
modalities=None,
|
56 |
split: str = "val",
|
57 |
urls: str | None = None,
|
58 |
batch_size: int = 8,
|
|
|
59 |
*args, **kwargs,
|
60 |
):
|
61 |
if len(modalities) == 1:
|
@@ -66,6 +64,7 @@ def build_terramesh_dataset(
|
|
66 |
split=split,
|
67 |
urls=urls,
|
68 |
batch_size=batch_size,
|
|
|
69 |
*args, **kwargs
|
70 |
)
|
71 |
return dataset
|
@@ -78,6 +77,7 @@ def build_terramesh_dataset(
|
|
78 |
split=split,
|
79 |
urls=urls,
|
80 |
batch_size=batch_size,
|
|
|
81 |
*args, **kwargs,
|
82 |
)
|
83 |
return dataset
|
@@ -86,7 +86,28 @@ def build_terramesh_dataset(
|
|
86 |
def zarr_decoder(key, value):
|
87 |
if key == "zarr.zip" or key.endswith(".zarr.zip"):
|
88 |
mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
|
89 |
-
return zarr.open_consolidated(mapper, mode="r")[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
def identity(sample):
|
@@ -115,6 +136,7 @@ def build_wds_dataset(
|
|
115 |
urls: str | None = None,
|
116 |
batch_size: int = 8,
|
117 |
transform: Callable = None,
|
|
|
118 |
*args, **kwargs
|
119 |
):
|
120 |
if urls is None:
|
@@ -134,12 +156,16 @@ def build_wds_dataset(
|
|
134 |
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard by default
|
135 |
|
136 |
# Build dataset
|
137 |
-
dataset = (
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
|
144 |
if transform is not None:
|
145 |
dataset = dataset.map(transform)
|
@@ -151,19 +177,18 @@ def build_wds_dataset(
|
|
151 |
return dataset
|
152 |
|
153 |
|
154 |
-
def combine_datasets(*args):
|
155 |
-
return itertools.chain(*args)
|
156 |
-
|
157 |
-
|
158 |
def build_multimodal_dataset(
|
159 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
160 |
-
modalities:
|
161 |
split: str = "val",
|
162 |
urls: str | None = None,
|
163 |
batch_size: int = 8,
|
164 |
transform: Callable = None,
|
|
|
165 |
*args, **kwargs
|
166 |
):
|
|
|
|
|
167 |
if urls is None:
|
168 |
# Filter modalities based availability (S1GRD and S1RTC not present in all subsets)
|
169 |
def filter_list(lst, value):
|
@@ -180,17 +205,21 @@ def build_multimodal_dataset(
|
|
180 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
181 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
182 |
|
183 |
-
dataset = build_datapipeline(urls, transform, batch_size, *args, **kwargs)
|
184 |
return dataset
|
185 |
|
186 |
|
187 |
-
def build_datapipeline(urls, transform, batch_size, *args, **kwargs):
|
188 |
datapipeline = wds.DataPipeline(
|
189 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
190 |
wds.ResampledShards(urls),
|
191 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
192 |
wds.shuffle(100), # Shuffle with a buffer of given size
|
193 |
-
|
|
|
|
|
|
|
|
|
194 |
wds.map(drop_time_dim), # Remove time dimension from tensors
|
195 |
wds.map(remove_extensions), # Remove "file extensions" from dictionary keys
|
196 |
( # Apply transformation
|
@@ -211,7 +240,7 @@ def extract_modality_names(s):
|
|
211 |
"""
|
212 |
Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
213 |
"""
|
214 |
-
# Regular expression pattern to match anything enclosed in
|
215 |
pattern = r"\{([^}]*)\}"
|
216 |
match = re.search(pattern, s)
|
217 |
return match.group(1).split(",") if match else []
|
@@ -259,8 +288,8 @@ def multi_tarfile_samples(
|
|
259 |
|
260 |
Args:
|
261 |
src_iter: Iterator over shards that *already brace expanded the shard numbers*,
|
262 |
-
e.g. {
|
263 |
-
This function will also work when no square braces for multiple modalities are used, e.g. {
|
264 |
It can be a drop-in replacement for wds.tarfile_samples.
|
265 |
handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
|
266 |
|
@@ -335,14 +364,14 @@ class Transpose(albumentations.ImageOnlyTransform):
|
|
335 |
self.axis = axis
|
336 |
|
337 |
def apply(self, img, **params):
|
338 |
-
return
|
339 |
|
340 |
def get_transform_init_args_names(self):
|
341 |
return "transpose"
|
342 |
|
343 |
|
344 |
def default_non_image_transform(array):
|
345 |
-
if hasattr(array,
|
346 |
return torch.from_numpy(array)
|
347 |
else:
|
348 |
return array
|
@@ -361,7 +390,6 @@ class MultimodalTransforms:
|
|
361 |
def __init__(
|
362 |
self,
|
363 |
transforms: dict | albumentations.Compose,
|
364 |
-
shared: bool = True,
|
365 |
non_image_modalities: list[str] | None = None,
|
366 |
non_image_transforms: object | None = None,
|
367 |
):
|
@@ -379,14 +407,16 @@ class MultimodalTransforms:
|
|
379 |
self.non_image_transforms = non_image_transforms or default_non_image_transform
|
380 |
|
381 |
def __call__(self, data: dict):
|
382 |
-
# albumentations requires a key
|
383 |
-
image_modality =
|
384 |
-
|
|
|
385 |
data = self.transforms(**data)
|
386 |
-
data[image_modality] = data.pop(
|
387 |
|
388 |
-
# Process sequence data which is ignored by albumentations as
|
389 |
for modality in self.non_image_modalities:
|
390 |
-
|
|
|
391 |
|
392 |
return data
|
|
|
19 |
import os
|
20 |
import io
|
21 |
import re
|
|
|
|
|
22 |
import zarr
|
23 |
import fsspec
|
|
|
24 |
import braceexpand
|
25 |
import numpy as np
|
26 |
import albumentations
|
|
|
49 |
|
50 |
def build_terramesh_dataset(
|
51 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
52 |
+
modalities: list | str = None,
|
53 |
split: str = "val",
|
54 |
urls: str | None = None,
|
55 |
batch_size: int = 8,
|
56 |
+
return_metadata: bool = False,
|
57 |
*args, **kwargs,
|
58 |
):
|
59 |
if len(modalities) == 1:
|
|
|
64 |
split=split,
|
65 |
urls=urls,
|
66 |
batch_size=batch_size,
|
67 |
+
return_metadata=return_metadata,
|
68 |
*args, **kwargs
|
69 |
)
|
70 |
return dataset
|
|
|
77 |
split=split,
|
78 |
urls=urls,
|
79 |
batch_size=batch_size,
|
80 |
+
return_metadata=return_metadata,
|
81 |
*args, **kwargs,
|
82 |
)
|
83 |
return dataset
|
|
|
86 |
def zarr_decoder(key, value):
|
87 |
if key == "zarr.zip" or key.endswith(".zarr.zip"):
|
88 |
mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
|
89 |
+
return zarr.open_consolidated(mapper, mode="r")["bands"][...]
|
90 |
+
|
91 |
+
|
92 |
+
def zarr_metadata_decoder(sample):
|
93 |
+
for key, value in list(sample.items()):
|
94 |
+
if key == "zarr.zip" or key.endswith(".zarr.zip"):
|
95 |
+
mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
|
96 |
+
data = zarr.open_consolidated(mapper, mode="r")
|
97 |
+
sample[key] = data["bands"][...]
|
98 |
+
|
99 |
+
# Add metadata
|
100 |
+
if "center_lon" not in sample.keys(): # Same center point for all modalities
|
101 |
+
sample["center_lon"] = data["center_lon"][...]
|
102 |
+
sample["center_lat"] = data["center_lat"][...]
|
103 |
+
if "cloud_mask" in data and "cloud_mask" not in sample.keys(): # Same S2 mask in all optical modalities
|
104 |
+
sample["cloud_mask"] = data["cloud_mask"][...][np.newaxis, ...] # Add channel dim to mask
|
105 |
+
if data["time"][...] > 1e6: # DEM has no valid timestamp (value = 0)
|
106 |
+
time_key = "time" if key == "zarr.zip" else "time_" + key
|
107 |
+
sample[time_key] = data["time"][...] # Integer values of type "datetime64[ns]"
|
108 |
+
# TODO Other types are currently not decoded, fall back to autodecode
|
109 |
+
|
110 |
+
return sample
|
111 |
|
112 |
|
113 |
def identity(sample):
|
|
|
136 |
urls: str | None = None,
|
137 |
batch_size: int = 8,
|
138 |
transform: Callable = None,
|
139 |
+
return_metadata: bool = False,
|
140 |
*args, **kwargs
|
141 |
):
|
142 |
if urls is None:
|
|
|
156 |
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard by default
|
157 |
|
158 |
# Build dataset
|
159 |
+
dataset = wds.WebDataset(urls, *args, **kwargs)
|
160 |
+
|
161 |
+
# Decode from bytes to numpy arrays, etc.
|
162 |
+
dataset = dataset.map(zarr_metadata_decoder) if return_metadata else dataset.decode(zarr_decoder)
|
163 |
+
|
164 |
+
# Rename modality to "image" and remove temporal dimension
|
165 |
+
dataset = (dataset
|
166 |
+
.rename(image="zarr.zip")
|
167 |
+
.map(drop_time_dim)
|
168 |
+
)
|
169 |
|
170 |
if transform is not None:
|
171 |
dataset = dataset.map(transform)
|
|
|
177 |
return dataset
|
178 |
|
179 |
|
|
|
|
|
|
|
|
|
180 |
def build_multimodal_dataset(
|
181 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
182 |
+
modalities: list = None,
|
183 |
split: str = "val",
|
184 |
urls: str | None = None,
|
185 |
batch_size: int = 8,
|
186 |
transform: Callable = None,
|
187 |
+
return_metadata: bool = False,
|
188 |
*args, **kwargs
|
189 |
):
|
190 |
+
if modalities is None:
|
191 |
+
modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"] # Default
|
192 |
if urls is None:
|
193 |
# Filter modalities based availability (S1GRD and S1RTC not present in all subsets)
|
194 |
def filter_list(lst, value):
|
|
|
205 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
206 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
207 |
|
208 |
+
dataset = build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs)
|
209 |
return dataset
|
210 |
|
211 |
|
212 |
+
def build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs):
|
213 |
datapipeline = wds.DataPipeline(
|
214 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
215 |
wds.ResampledShards(urls),
|
216 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
217 |
wds.shuffle(100), # Shuffle with a buffer of given size
|
218 |
+
(
|
219 |
+
wds.map(zarr_metadata_decoder)
|
220 |
+
if return_metadata
|
221 |
+
else wds.decode(zarr_decoder) # Decode from bytes to numpy arrays, etc.
|
222 |
+
),
|
223 |
wds.map(drop_time_dim), # Remove time dimension from tensors
|
224 |
wds.map(remove_extensions), # Remove "file extensions" from dictionary keys
|
225 |
( # Apply transformation
|
|
|
240 |
"""
|
241 |
Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
242 |
"""
|
243 |
+
# Regular expression pattern to match anything enclosed in "{" and "}", and comma separated
|
244 |
pattern = r"\{([^}]*)\}"
|
245 |
match = re.search(pattern, s)
|
246 |
return match.group(1).split(",") if match else []
|
|
|
288 |
|
289 |
Args:
|
290 |
src_iter: Iterator over shards that *already brace expanded the shard numbers*,
|
291 |
+
e.g. {"url": "shard_root_train_[rgb,caption]/00000.tar"}, {"url": "shard_root_train_[rgb,caption]/00001.tar"}, ...
|
292 |
+
This function will also work when no square braces for multiple modalities are used, e.g. {"url": "shard_root_train/00000.tar"}, ...
|
293 |
It can be a drop-in replacement for wds.tarfile_samples.
|
294 |
handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
|
295 |
|
|
|
364 |
self.axis = axis
|
365 |
|
366 |
def apply(self, img, **params):
|
367 |
+
return np.transpose(img, self.axis)
|
368 |
|
369 |
def get_transform_init_args_names(self):
|
370 |
return "transpose"
|
371 |
|
372 |
|
373 |
def default_non_image_transform(array):
|
374 |
+
if hasattr(array, "dtype") and (array.dtype == float or array.dtype == int):
|
375 |
return torch.from_numpy(array)
|
376 |
else:
|
377 |
return array
|
|
|
390 |
def __init__(
|
391 |
self,
|
392 |
transforms: dict | albumentations.Compose,
|
|
|
393 |
non_image_modalities: list[str] | None = None,
|
394 |
non_image_transforms: object | None = None,
|
395 |
):
|
|
|
407 |
self.non_image_transforms = non_image_transforms or default_non_image_transform
|
408 |
|
409 |
def __call__(self, data: dict):
|
410 |
+
# albumentations requires a key "image" and treats all other keys as additional targets
|
411 |
+
image_modality = "image" if "image" in data else \
|
412 |
+
[k for k in data.keys() if k not in self.non_image_modalities][0] # Find an image modality name
|
413 |
+
data["image"] = data.pop(image_modality) # albumentations expects an input called "image"
|
414 |
data = self.transforms(**data)
|
415 |
+
data[image_modality] = data.pop("image")
|
416 |
|
417 |
+
# Process sequence data which is ignored by albumentations as "global_label"
|
418 |
for modality in self.non_image_modalities:
|
419 |
+
if modality in data:
|
420 |
+
data[modality] = self.non_image_transforms(data[modality])
|
421 |
|
422 |
return data
|