blumenstiel commited on
Commit
4a0e081
·
verified ·
1 Parent(s): bc2367f

Update terramesh.py

Browse files
Files changed (1) hide show
  1. terramesh.py +61 -31
terramesh.py CHANGED
@@ -19,11 +19,8 @@
19
  import os
20
  import io
21
  import re
22
-
23
- import numpy
24
  import zarr
25
  import fsspec
26
- import itertools
27
  import braceexpand
28
  import numpy as np
29
  import albumentations
@@ -52,10 +49,11 @@ split_files = {
52
 
53
  def build_terramesh_dataset(
54
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
55
- modalities=None,
56
  split: str = "val",
57
  urls: str | None = None,
58
  batch_size: int = 8,
 
59
  *args, **kwargs,
60
  ):
61
  if len(modalities) == 1:
@@ -66,6 +64,7 @@ def build_terramesh_dataset(
66
  split=split,
67
  urls=urls,
68
  batch_size=batch_size,
 
69
  *args, **kwargs
70
  )
71
  return dataset
@@ -78,6 +77,7 @@ def build_terramesh_dataset(
78
  split=split,
79
  urls=urls,
80
  batch_size=batch_size,
 
81
  *args, **kwargs,
82
  )
83
  return dataset
@@ -86,7 +86,28 @@ def build_terramesh_dataset(
86
  def zarr_decoder(key, value):
87
  if key == "zarr.zip" or key.endswith(".zarr.zip"):
88
  mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
89
- return zarr.open_consolidated(mapper, mode="r")['bands'][...]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  def identity(sample):
@@ -115,6 +136,7 @@ def build_wds_dataset(
115
  urls: str | None = None,
116
  batch_size: int = 8,
117
  transform: Callable = None,
 
118
  *args, **kwargs
119
  ):
120
  if urls is None:
@@ -134,12 +156,16 @@ def build_wds_dataset(
134
  kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard by default
135
 
136
  # Build dataset
137
- dataset = (
138
- wds.WebDataset(urls, *args, **kwargs)
139
- .decode(zarr_decoder) # Decode byte files
140
- .rename(image='zarr.zip')
141
- .map_dict(image=drop_time_dim) # Remove temporal dimension
142
- )
 
 
 
 
143
 
144
  if transform is not None:
145
  dataset = dataset.map(transform)
@@ -151,19 +177,18 @@ def build_wds_dataset(
151
  return dataset
152
 
153
 
154
- def combine_datasets(*args):
155
- return itertools.chain(*args)
156
-
157
-
158
  def build_multimodal_dataset(
159
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
160
- modalities: str = "S2L2A",
161
  split: str = "val",
162
  urls: str | None = None,
163
  batch_size: int = 8,
164
  transform: Callable = None,
 
165
  *args, **kwargs
166
  ):
 
 
167
  if urls is None:
168
  # Filter modalities based availability (S1GRD and S1RTC not present in all subsets)
169
  def filter_list(lst, value):
@@ -180,17 +205,21 @@ def build_multimodal_dataset(
180
  urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
181
  + "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
182
 
183
- dataset = build_datapipeline(urls, transform, batch_size, *args, **kwargs)
184
  return dataset
185
 
186
 
187
- def build_datapipeline(urls, transform, batch_size, *args, **kwargs):
188
  datapipeline = wds.DataPipeline(
189
  # Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
190
  wds.ResampledShards(urls),
191
  multi_tarfile_samples, # Extract individual samples from multi-modal tar files
192
  wds.shuffle(100), # Shuffle with a buffer of given size
193
- wds.decode(zarr_decoder), # Decode from bytes to PIL images, numpy arrays, etc.
 
 
 
 
194
  wds.map(drop_time_dim), # Remove time dimension from tensors
195
  wds.map(remove_extensions), # Remove "file extensions" from dictionary keys
196
  ( # Apply transformation
@@ -211,7 +240,7 @@ def extract_modality_names(s):
211
  """
212
  Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
213
  """
214
- # Regular expression pattern to match anything enclosed in '{' and '}', and comma separated
215
  pattern = r"\{([^}]*)\}"
216
  match = re.search(pattern, s)
217
  return match.group(1).split(",") if match else []
@@ -259,8 +288,8 @@ def multi_tarfile_samples(
259
 
260
  Args:
261
  src_iter: Iterator over shards that *already brace expanded the shard numbers*,
262
- e.g. {'url': 'shard_root_train_[rgb,caption]/00000.tar'}, {'url': 'shard_root_train_[rgb,caption]/00001.tar'}, ...
263
- This function will also work when no square braces for multiple modalities are used, e.g. {'url': 'shard_root_train/00000.tar'}, ...
264
  It can be a drop-in replacement for wds.tarfile_samples.
265
  handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
266
 
@@ -335,14 +364,14 @@ class Transpose(albumentations.ImageOnlyTransform):
335
  self.axis = axis
336
 
337
  def apply(self, img, **params):
338
- return numpy.transpose(img, self.axis)
339
 
340
  def get_transform_init_args_names(self):
341
  return "transpose"
342
 
343
 
344
  def default_non_image_transform(array):
345
- if hasattr(array, 'dtype') and (array.dtype == float or array.dtype == int):
346
  return torch.from_numpy(array)
347
  else:
348
  return array
@@ -361,7 +390,6 @@ class MultimodalTransforms:
361
  def __init__(
362
  self,
363
  transforms: dict | albumentations.Compose,
364
- shared: bool = True,
365
  non_image_modalities: list[str] | None = None,
366
  non_image_transforms: object | None = None,
367
  ):
@@ -379,14 +407,16 @@ class MultimodalTransforms:
379
  self.non_image_transforms = non_image_transforms or default_non_image_transform
380
 
381
  def __call__(self, data: dict):
382
- # albumentations requires a key 'image' and treats all other keys as additional targets
383
- image_modality = [k for k in data.keys() if k not in self.non_image_modalities][0]
384
- data['image'] = data.pop(image_modality)
 
385
  data = self.transforms(**data)
386
- data[image_modality] = data.pop('image')
387
 
388
- # Process sequence data which is ignored by albumentations as 'global_label'
389
  for modality in self.non_image_modalities:
390
- data[modality] = self.non_image_transforms(data[modality])
 
391
 
392
  return data
 
19
  import os
20
  import io
21
  import re
 
 
22
  import zarr
23
  import fsspec
 
24
  import braceexpand
25
  import numpy as np
26
  import albumentations
 
49
 
50
  def build_terramesh_dataset(
51
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
52
+ modalities: list | str = None,
53
  split: str = "val",
54
  urls: str | None = None,
55
  batch_size: int = 8,
56
+ return_metadata: bool = False,
57
  *args, **kwargs,
58
  ):
59
  if len(modalities) == 1:
 
64
  split=split,
65
  urls=urls,
66
  batch_size=batch_size,
67
+ return_metadata=return_metadata,
68
  *args, **kwargs
69
  )
70
  return dataset
 
77
  split=split,
78
  urls=urls,
79
  batch_size=batch_size,
80
+ return_metadata=return_metadata,
81
  *args, **kwargs,
82
  )
83
  return dataset
 
86
  def zarr_decoder(key, value):
87
  if key == "zarr.zip" or key.endswith(".zarr.zip"):
88
  mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
89
+ return zarr.open_consolidated(mapper, mode="r")["bands"][...]
90
+
91
+
92
+ def zarr_metadata_decoder(sample):
93
+ for key, value in list(sample.items()):
94
+ if key == "zarr.zip" or key.endswith(".zarr.zip"):
95
+ mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
96
+ data = zarr.open_consolidated(mapper, mode="r")
97
+ sample[key] = data["bands"][...]
98
+
99
+ # Add metadata
100
+ if "center_lon" not in sample.keys(): # Same center point for all modalities
101
+ sample["center_lon"] = data["center_lon"][...]
102
+ sample["center_lat"] = data["center_lat"][...]
103
+ if "cloud_mask" in data and "cloud_mask" not in sample.keys(): # Same S2 mask in all optical modalities
104
+ sample["cloud_mask"] = data["cloud_mask"][...][np.newaxis, ...] # Add channel dim to mask
105
+ if data["time"][...] > 1e6: # DEM has no valid timestamp (value = 0)
106
+ time_key = "time" if key == "zarr.zip" else "time_" + key
107
+ sample[time_key] = data["time"][...] # Integer values of type "datetime64[ns]"
108
+ # TODO Other types are currently not decoded, fall back to autodecode
109
+
110
+ return sample
111
 
112
 
113
  def identity(sample):
 
136
  urls: str | None = None,
137
  batch_size: int = 8,
138
  transform: Callable = None,
139
+ return_metadata: bool = False,
140
  *args, **kwargs
141
  ):
142
  if urls is None:
 
156
  kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard by default
157
 
158
  # Build dataset
159
+ dataset = wds.WebDataset(urls, *args, **kwargs)
160
+
161
+ # Decode from bytes to numpy arrays, etc.
162
+ dataset = dataset.map(zarr_metadata_decoder) if return_metadata else dataset.decode(zarr_decoder)
163
+
164
+ # Rename modality to "image" and remove temporal dimension
165
+ dataset = (dataset
166
+ .rename(image="zarr.zip")
167
+ .map(drop_time_dim)
168
+ )
169
 
170
  if transform is not None:
171
  dataset = dataset.map(transform)
 
177
  return dataset
178
 
179
 
 
 
 
 
180
  def build_multimodal_dataset(
181
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
182
+ modalities: list = None,
183
  split: str = "val",
184
  urls: str | None = None,
185
  batch_size: int = 8,
186
  transform: Callable = None,
187
+ return_metadata: bool = False,
188
  *args, **kwargs
189
  ):
190
+ if modalities is None:
191
+ modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"] # Default
192
  if urls is None:
193
  # Filter modalities based availability (S1GRD and S1RTC not present in all subsets)
194
  def filter_list(lst, value):
 
205
  urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
206
  + "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
207
 
208
+ dataset = build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs)
209
  return dataset
210
 
211
 
212
+ def build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs):
213
  datapipeline = wds.DataPipeline(
214
  # Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
215
  wds.ResampledShards(urls),
216
  multi_tarfile_samples, # Extract individual samples from multi-modal tar files
217
  wds.shuffle(100), # Shuffle with a buffer of given size
218
+ (
219
+ wds.map(zarr_metadata_decoder)
220
+ if return_metadata
221
+ else wds.decode(zarr_decoder) # Decode from bytes to numpy arrays, etc.
222
+ ),
223
  wds.map(drop_time_dim), # Remove time dimension from tensors
224
  wds.map(remove_extensions), # Remove "file extensions" from dictionary keys
225
  ( # Apply transformation
 
240
  """
241
  Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
242
  """
243
+ # Regular expression pattern to match anything enclosed in "{" and "}", and comma separated
244
  pattern = r"\{([^}]*)\}"
245
  match = re.search(pattern, s)
246
  return match.group(1).split(",") if match else []
 
288
 
289
  Args:
290
  src_iter: Iterator over shards that *already brace expanded the shard numbers*,
291
+ e.g. {"url": "shard_root_train_[rgb,caption]/00000.tar"}, {"url": "shard_root_train_[rgb,caption]/00001.tar"}, ...
292
+ This function will also work when no square braces for multiple modalities are used, e.g. {"url": "shard_root_train/00000.tar"}, ...
293
  It can be a drop-in replacement for wds.tarfile_samples.
294
  handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
295
 
 
364
  self.axis = axis
365
 
366
  def apply(self, img, **params):
367
+ return np.transpose(img, self.axis)
368
 
369
  def get_transform_init_args_names(self):
370
  return "transpose"
371
 
372
 
373
  def default_non_image_transform(array):
374
+ if hasattr(array, "dtype") and (array.dtype == float or array.dtype == int):
375
  return torch.from_numpy(array)
376
  else:
377
  return array
 
390
  def __init__(
391
  self,
392
  transforms: dict | albumentations.Compose,
 
393
  non_image_modalities: list[str] | None = None,
394
  non_image_transforms: object | None = None,
395
  ):
 
407
  self.non_image_transforms = non_image_transforms or default_non_image_transform
408
 
409
  def __call__(self, data: dict):
410
+ # albumentations requires a key "image" and treats all other keys as additional targets
411
+ image_modality = "image" if "image" in data else \
412
+ [k for k in data.keys() if k not in self.non_image_modalities][0] # Find an image modality name
413
+ data["image"] = data.pop(image_modality) # albumentations expects an input called "image"
414
  data = self.transforms(**data)
415
+ data[image_modality] = data.pop("image")
416
 
417
+ # Process sequence data which is ignored by albumentations as "global_label"
418
  for modality in self.non_image_modalities:
419
+ if modality in data:
420
+ data[modality] = self.non_image_transforms(data[modality])
421
 
422
  return data