Datasets:
Update terramesh.py
Browse files- terramesh.py +63 -5
terramesh.py
CHANGED
@@ -25,6 +25,7 @@ import fsspec
|
|
25 |
import braceexpand
|
26 |
import numpy as np
|
27 |
import albumentations
|
|
|
28 |
import webdataset as wds
|
29 |
from collections.abc import Callable, Iterable
|
30 |
from torch.utils.data._utils.collate import default_collate
|
@@ -46,6 +47,31 @@ split_files = {
|
|
46 |
}
|
47 |
}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def build_terramesh_dataset(
|
51 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
@@ -54,6 +80,7 @@ def build_terramesh_dataset(
|
|
54 |
urls: str | None = None,
|
55 |
batch_size: int = 8,
|
56 |
return_metadata: bool = False,
|
|
|
57 |
*args, **kwargs,
|
58 |
):
|
59 |
if len(modalities) == 1:
|
@@ -65,6 +92,7 @@ def build_terramesh_dataset(
|
|
65 |
urls=urls,
|
66 |
batch_size=batch_size,
|
67 |
return_metadata=return_metadata,
|
|
|
68 |
*args, **kwargs
|
69 |
)
|
70 |
return dataset
|
@@ -78,6 +106,7 @@ def build_terramesh_dataset(
|
|
78 |
urls=urls,
|
79 |
batch_size=batch_size,
|
80 |
return_metadata=return_metadata,
|
|
|
81 |
*args, **kwargs,
|
82 |
)
|
83 |
return dataset
|
@@ -136,6 +165,7 @@ def build_wds_dataset(
|
|
136 |
urls: str | None = None,
|
137 |
batch_size: int = 8,
|
138 |
transform: Callable = None,
|
|
|
139 |
return_metadata: bool = False,
|
140 |
*args, **kwargs
|
141 |
):
|
@@ -153,7 +183,7 @@ def build_wds_dataset(
|
|
153 |
[os.path.join(path, split, modality, f) for f in files]
|
154 |
)
|
155 |
|
156 |
-
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard
|
157 |
|
158 |
# Build dataset
|
159 |
dataset = wds.WebDataset(urls, *args, **kwargs)
|
@@ -184,6 +214,7 @@ def build_multimodal_dataset(
|
|
184 |
urls: str | None = None,
|
185 |
batch_size: int = 8,
|
186 |
transform: Callable = None,
|
|
|
187 |
return_metadata: bool = False,
|
188 |
*args, **kwargs
|
189 |
):
|
@@ -205,16 +236,23 @@ def build_multimodal_dataset(
|
|
205 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
206 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
207 |
|
208 |
-
dataset = build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs)
|
209 |
return dataset
|
210 |
|
211 |
|
212 |
-
def build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs):
|
|
|
|
|
|
|
|
|
213 |
datapipeline = wds.DataPipeline(
|
214 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
215 |
-
|
|
|
|
|
|
|
216 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
217 |
-
wds.shuffle(
|
218 |
(
|
219 |
wds.map(zarr_metadata_decoder)
|
220 |
if return_metadata
|
@@ -420,3 +458,23 @@ class MultimodalTransforms:
|
|
420 |
data[modality] = self.non_image_transforms(data[modality])
|
421 |
|
422 |
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
import braceexpand
|
26 |
import numpy as np
|
27 |
import albumentations
|
28 |
+
import warnings
|
29 |
import webdataset as wds
|
30 |
from collections.abc import Callable, Iterable
|
31 |
from torch.utils.data._utils.collate import default_collate
|
|
|
47 |
}
|
48 |
}
|
49 |
|
50 |
+
statistics = {
|
51 |
+
"mean": {
|
52 |
+
"S2L1C": [2357.090, 2137.398, 2018.799, 2082.998, 2295.663, 2854.548, 3122.860, 3040.571, 3306.491, 1473.849,
|
53 |
+
506.072, 2472.840, 1838.943],
|
54 |
+
"S2L2A": [1390.461, 1503.332, 1718.211, 1853.926, 2199.116, 2779.989, 2987.025, 3083.248, 3132.235, 3162.989,
|
55 |
+
2424.902, 1857.665],
|
56 |
+
"S2RGB": [110.349, 99.507, 75.843],
|
57 |
+
"S1GRD": [-12.577, -20.265],
|
58 |
+
"S1RTC": [-10.93, -17.329],
|
59 |
+
"NDVI": [0.327],
|
60 |
+
"DEM": [651.663],
|
61 |
+
},
|
62 |
+
"std": {
|
63 |
+
"S2L1C": [1673.639, 1722.641, 1602.205, 1873.138, 1866.055, 1779.839, 1776.496, 1724.114, 1771.041, 1079.786,
|
64 |
+
512.404, 1340.879, 1172.435],
|
65 |
+
"S2L2A": [2131.157, 2163.666, 2059.311, 2152.477, 2105.179, 1912.773, 1842.326, 1893.568, 1775.656, 1814.907,
|
66 |
+
1436.282, 1336.155],
|
67 |
+
"S2RGB": [69.905, 53.708, 53.378],
|
68 |
+
"S1GRD": [5.179, 5.872],
|
69 |
+
"S1RTC": [4.391, 4.459],
|
70 |
+
"NDVI": [0.322],
|
71 |
+
"DEM": [928.168]
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
|
76 |
def build_terramesh_dataset(
|
77 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
|
|
80 |
urls: str | None = None,
|
81 |
batch_size: int = 8,
|
82 |
return_metadata: bool = False,
|
83 |
+
shuffle: bool = True,
|
84 |
*args, **kwargs,
|
85 |
):
|
86 |
if len(modalities) == 1:
|
|
|
92 |
urls=urls,
|
93 |
batch_size=batch_size,
|
94 |
return_metadata=return_metadata,
|
95 |
+
shuffle=shuffle,
|
96 |
*args, **kwargs
|
97 |
)
|
98 |
return dataset
|
|
|
106 |
urls=urls,
|
107 |
batch_size=batch_size,
|
108 |
return_metadata=return_metadata,
|
109 |
+
shuffle=shuffle,
|
110 |
*args, **kwargs,
|
111 |
)
|
112 |
return dataset
|
|
|
165 |
urls: str | None = None,
|
166 |
batch_size: int = 8,
|
167 |
transform: Callable = None,
|
168 |
+
shuffle: bool = True,
|
169 |
return_metadata: bool = False,
|
170 |
*args, **kwargs
|
171 |
):
|
|
|
183 |
[os.path.join(path, split, modality, f) for f in files]
|
184 |
)
|
185 |
|
186 |
+
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
|
187 |
|
188 |
# Build dataset
|
189 |
dataset = wds.WebDataset(urls, *args, **kwargs)
|
|
|
214 |
urls: str | None = None,
|
215 |
batch_size: int = 8,
|
216 |
transform: Callable = None,
|
217 |
+
shuffle: bool = True,
|
218 |
return_metadata: bool = False,
|
219 |
*args, **kwargs
|
220 |
):
|
|
|
236 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
237 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
238 |
|
239 |
+
dataset = build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs)
|
240 |
return dataset
|
241 |
|
242 |
|
243 |
+
def build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs):
|
244 |
+
shardshuffle = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
|
245 |
+
deterministic = kwargs.get("deterministic", False)
|
246 |
+
seed = kwargs.get("seed", 0)
|
247 |
+
|
248 |
datapipeline = wds.DataPipeline(
|
249 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
250 |
+
(
|
251 |
+
wds.ResampledShards(urls, deterministic=deterministic, seed=seed)
|
252 |
+
if shuffle else wds.SimpleShardList(urls)
|
253 |
+
),
|
254 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
255 |
+
wds.shuffle(shardshuffle, seed=seed), # Shuffle with a buffer of given size
|
256 |
(
|
257 |
wds.map(zarr_metadata_decoder)
|
258 |
if return_metadata
|
|
|
458 |
data[modality] = self.non_image_transforms(data[modality])
|
459 |
|
460 |
return data
|
461 |
+
|
462 |
+
|
463 |
+
class MultimodalNormalize(Callable):
|
464 |
+
def __init__(self, mean: dict[str, list[float]], std: dict[str, list[float]]):
|
465 |
+
super().__init__()
|
466 |
+
self.mean = mean
|
467 |
+
self.std = std
|
468 |
+
|
469 |
+
def __call__(self, **batch):
|
470 |
+
for m in self.mean.keys():
|
471 |
+
if m not in batch.keys():
|
472 |
+
continue
|
473 |
+
batch[m] = (batch[m] - self.mean[m]) / self.std[m]
|
474 |
+
return batch
|
475 |
+
|
476 |
+
def add_targets(self, targets):
|
477 |
+
"""
|
478 |
+
Required by albumentations
|
479 |
+
"""
|
480 |
+
pass
|