Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ library_name:
|
|
11 |
## What is it?
|
12 |
- Recipe for producing a state-of-the-art LLM pre-training dataset having `10+ Trillion` tokens, derived from [FineWeb V1.1.0](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
|
13 |
- Evaluation results showing more than `2%` avg improvement (with multiple random seeds) over FineWeb V1.1.0 tokens on common benchmarks for a `7B` parameter ablation model
|
14 |
-
- [Data Prep Kit](https://github.com/IBM/data-prep-kit) [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/recipes/GneissWeb/GneissWeb.ipynb) for reproducing the annotations and filters on top of FineWeb and [Notebook](https://github.com/
|
15 |
- Details in the [Blog](https://research.ibm.com/blog/gneissweb-for-granite-training) and [Paper](https://huggingface.co/datasets/ibm-granite/GneissWeb/blob/main/GneissWebPaper_Feb21_2025.pdf)
|
16 |
- Ablations model with `7B` parameters pre-trained with `350B` tokens of [GneissWeb](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed1), [FineWeb](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.seed1) V1.1.0 and [FineWeb.Edu](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed1) For each dataset three ablation models trained subsets of 350 Billion tokens based on different seeds are being released
|
17 |
- Gneiss, pronounced "nice" (naɪs), is a durable igneous rock, just like IBM’s open-source [Granite](https://huggingface.co/ibm-granite) models trained from it
|
@@ -103,7 +103,7 @@ Given than training models of size `7 Billion` parameters require lot more compu
|
|
103 |
|
104 |
4. [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/recipes/GneissWeb/GneissWeb.ipynb) to recreate GneissWeb using the methods described above
|
105 |
|
106 |
-
5. [Notebook](https://github.com/
|
107 |
|
108 |
6. [Blog](https://research.ibm.com/blog/gneissweb-for-granite-training) and [Paper](https://arxiv.org/abs/2502.14907)
|
109 |
|
|
|
11 |
## What is it?
|
12 |
- Recipe for producing a state-of-the-art LLM pre-training dataset having `10+ Trillion` tokens, derived from [FineWeb V1.1.0](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
|
13 |
- Evaluation results showing more than `2%` avg improvement (with multiple random seeds) over FineWeb V1.1.0 tokens on common benchmarks for a `7B` parameter ablation model
|
14 |
+
- [Data Prep Kit](https://github.com/IBM/data-prep-kit) [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/recipes/GneissWeb/GneissWeb.ipynb) for reproducing the annotations and filters on top of FineWeb and [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/transforms/universal/bloom/bloom_python_HuggingFace.ipynb) for applying a bloom filter on FineWeb to quickly reproduce an approximate version of GneissWeb (without annotations or filters)
|
15 |
- Details in the [Blog](https://research.ibm.com/blog/gneissweb-for-granite-training) and [Paper](https://huggingface.co/datasets/ibm-granite/GneissWeb/blob/main/GneissWebPaper_Feb21_2025.pdf)
|
16 |
- Ablations model with `7B` parameters pre-trained with `350B` tokens of [GneissWeb](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed1), [FineWeb](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.seed1) V1.1.0 and [FineWeb.Edu](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed1) For each dataset three ablation models trained subsets of 350 Billion tokens based on different seeds are being released
|
17 |
- Gneiss, pronounced "nice" (naɪs), is a durable igneous rock, just like IBM’s open-source [Granite](https://huggingface.co/ibm-granite) models trained from it
|
|
|
103 |
|
104 |
4. [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/recipes/GneissWeb/GneissWeb.ipynb) to recreate GneissWeb using the methods described above
|
105 |
|
106 |
+
5. [Notebook](https://github.com/data-prep-kit/data-prep-kit/blob/dev/transforms/universal/bloom/bloom_python_HuggingFace.ipynb) to recreate GneissWeb using a bloom filter built on the document ids of GneissWeb
|
107 |
|
108 |
6. [Blog](https://research.ibm.com/blog/gneissweb-for-granite-training) and [Paper](https://arxiv.org/abs/2502.14907)
|
109 |
|