Datasets:
Update README.md
Browse filesRefined GPT response
README.md
CHANGED
@@ -75,7 +75,7 @@ dataset_info:
|
|
75 |
dtype: int32
|
76 |
splits:
|
77 |
- name: train
|
78 |
-
num_bytes: 298274262201
|
79 |
num_examples: 67000
|
80 |
- name: validation
|
81 |
num_bytes: 35503432435.4
|
@@ -84,7 +84,7 @@ dataset_info:
|
|
84 |
num_bytes: 31770625008.6
|
85 |
num_examples: 7200
|
86 |
download_size: 361766155632
|
87 |
-
dataset_size: 365548319645
|
88 |
configs:
|
89 |
- config_name: default
|
90 |
data_files:
|
@@ -94,4 +94,142 @@ configs:
|
|
94 |
path: data/validation-*
|
95 |
- split: test
|
96 |
path: data/test-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
dtype: int32
|
76 |
splits:
|
77 |
- name: train
|
78 |
+
num_bytes: 298274262201
|
79 |
num_examples: 67000
|
80 |
- name: validation
|
81 |
num_bytes: 35503432435.4
|
|
|
84 |
num_bytes: 31770625008.6
|
85 |
num_examples: 7200
|
86 |
download_size: 361766155632
|
87 |
+
dataset_size: 365548319645
|
88 |
configs:
|
89 |
- config_name: default
|
90 |
data_files:
|
|
|
94 |
path: data/validation-*
|
95 |
- split: test
|
96 |
path: data/test-*
|
97 |
+
license: mit
|
98 |
+
task_categories:
|
99 |
+
- object-detection
|
100 |
+
- image-classification
|
101 |
+
- image-segmentation
|
102 |
+
- depth-estimation
|
103 |
+
- video-classification
|
104 |
+
- any-to-any
|
105 |
+
- image-to-text
|
106 |
+
- reinforcement-learning
|
107 |
+
language:
|
108 |
+
- en
|
109 |
+
pretty_name: CARLA Autopilot Multimodal Dataset
|
110 |
+
size_categories:
|
111 |
+
- 10K<n<100K
|
112 |
---
|
113 |
+
|
114 |
+
# CARLA Autopilot Multimodal Dataset
|
115 |
+
|
116 |
+
This dataset contains synchronized multimodal driving data collected in the [CARLA simulator](https://carla.org/) using the autopilot feature. It provides RGB images from multiple cameras, semantic segmentation, LiDAR point clouds, 2D bounding boxes, and ego-vehicle state/control signals across varied weather, maps, and traffic densities.
|
117 |
+
|
118 |
+
The dataset is designed for research in **autonomous driving**, **sensor fusion**, **imitation learning**, and **self-driving evaluation**.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## Dataset Summary
|
123 |
+
|
124 |
+
- **Runs**: 30 autopilot runs
|
125 |
+
- **Sensors**:
|
126 |
+
- RGB cameras: front, front-left, front-right, rear (800×600, fov=90°)
|
127 |
+
- Semantic segmentation: front (raw + colorized)
|
128 |
+
- LiDAR: 32-channel ray-cast, 20 Hz, 80 m range
|
129 |
+
- Collision sensor for impact logs
|
130 |
+
- **Annotations**: 2D bounding boxes and class labels (vehicles, pedestrians) w.r.t front camera
|
131 |
+
- **Ego states**: position, rotation, velocity, control (throttle/steer/brake), speed (km/h)
|
132 |
+
- **Environment**: varied weather, time-of-day (sun altitude), NPC traffic (vehicles + pedestrians)
|
133 |
+
|
134 |
+
**Splits**
|
135 |
+
- Train: 67,000 frames
|
136 |
+
- Validation: 8,400 frames
|
137 |
+
- Test: 7,200 frames
|
138 |
+
- Total size: ~365 GB
|
139 |
+
|
140 |
+
---
|
141 |
+
|
142 |
+
## Relation to Previous Versions
|
143 |
+
|
144 |
+
This dataset, **CARLA Autopilot Multimodal Dataset**, is an extension of the earlier
|
145 |
+
[CARLA Autopilot Image Dataset](https://huggingface.co/datasets/your-username/carla-autopilot-images).
|
146 |
+
|
147 |
+
- **Previous version (`carla-autopilot-images`)**:
|
148 |
+
Contained synchronized RGB camera views (front, front-left, front-right, rear) with ego-vehicle states, controls, and environment metadata.
|
149 |
+
|
150 |
+
- **Current version (`carla-autopilot-multimodal-dataset`)**:
|
151 |
+
Adds **new sensor modalities and richer annotations**, including:
|
152 |
+
- Semantic segmentation (front view)
|
153 |
+
- LiDAR point clouds
|
154 |
+
- 2D bounding boxes and labels (vehicles, pedestrians)
|
155 |
+
- Expanded metadata (collisions, weather difficulty, quality metrics)
|
156 |
+
|
157 |
+
In short, `v2` augments the original dataset with **multimodal signals for perception + sensor fusion research**,
|
158 |
+
while retaining full compatibility with the core camera + state data from `v1`.
|
159 |
+
|
160 |
+
---
|
161 |
+
|
162 |
+
## Features
|
163 |
+
|
164 |
+
Each sample contains:
|
165 |
+
|
166 |
+
- `run_id` (string): Identifier for the simulation run
|
167 |
+
- `frame` (int): Frame number
|
168 |
+
- `timestamp` (float): Relative timestamp (s)
|
169 |
+
- `image_front`, `image_front_left`, `image_front_right`, `image_rear` (images): RGB views
|
170 |
+
- `seg_front` (image): Semantic segmentation (front view)
|
171 |
+
- `lidar` (list[list[float32]]): LiDAR point cloud (x, y, z, intensity)
|
172 |
+
- `boxes` (list[list[float32]]): 2D bounding boxes in `[xmin, ymin, xmax, ymax]` format
|
173 |
+
- `box_labels` (list[string]): Class labels for bounding boxes
|
174 |
+
- `location_{x,y,z}` (float): Ego position in world coords
|
175 |
+
- `rotation_{pitch,yaw,roll}` (float): Ego rotation
|
176 |
+
- `velocity_{x,y,z}` (float): Ego velocity (m/s)
|
177 |
+
- `speed_kmh` (float): Ego speed (km/h)
|
178 |
+
- `throttle`, `steer`, `brake` (float): Control inputs
|
179 |
+
- `nearby_vehicles_50m`, `total_npc_vehicles`, `total_npc_walkers` (int): Traffic counts
|
180 |
+
- `map_name` (string): CARLA map used
|
181 |
+
- `weather_*` (float): Weather conditions (cloudiness, precipitation, fog, sun altitude)
|
182 |
+
- `vehicles_spawned`, `walkers_spawned` (int): Number of NPCs
|
183 |
+
- `duration_seconds` (int): Total run length in seconds
|
184 |
+
|
185 |
+
---
|
186 |
+
|
187 |
+
## Example Usage
|
188 |
+
|
189 |
+
```python
|
190 |
+
from datasets import load_dataset
|
191 |
+
|
192 |
+
ds = load_dataset("immanuelpeter/carla-autopilot-multimodal-dataset", split="train")
|
193 |
+
sample = ds[0]
|
194 |
+
|
195 |
+
# Access RGB image and LiDAR
|
196 |
+
front_img = sample["image_front"]
|
197 |
+
lidar = sample["lidar"]
|
198 |
+
boxes = sample["boxes"]
|
199 |
+
````
|
200 |
+
|
201 |
+
---
|
202 |
+
|
203 |
+
## Collection Process
|
204 |
+
|
205 |
+
Data was collected using a custom CARLA Python script that:
|
206 |
+
|
207 |
+
* Spawns an ego vehicle with autopilot enabled
|
208 |
+
* Spawns configurable NPC vehicles and pedestrians
|
209 |
+
* Randomizes weather and lighting conditions per run
|
210 |
+
* Synchronizes all sensors and saves every *N*-th frame
|
211 |
+
* Records vehicle state, control signals, collisions, and environment statistics
|
212 |
+
|
213 |
+
All sensors operate in synchronous mode for frame alignment.
|
214 |
+
|
215 |
+
---
|
216 |
+
|
217 |
+
## Intended Use
|
218 |
+
|
219 |
+
* Training and benchmarking multimodal self-driving models
|
220 |
+
* Research on sensor fusion, perception, and planning
|
221 |
+
* Imitation learning from autopilot trajectories
|
222 |
+
* Evaluation under diverse weather and traffic conditions
|
223 |
+
|
224 |
+
<!-- ## Citation
|
225 |
+
|
226 |
+
If you use this dataset, please cite:
|
227 |
+
|
228 |
+
```
|
229 |
+
@dataset{yourname2025carlaautopilot,
|
230 |
+
author = {Your Name},
|
231 |
+
title = {CARLA Autopilot Multimodal Dataset},
|
232 |
+
year = {2025},
|
233 |
+
howpublished = {\url{https://huggingface.co/datasets/your-username/carla-autopilot-multimodal-dataset}}
|
234 |
+
}
|
235 |
+
``` -->
|