|
|
|
|
|
|
|
""" |
|
|
|
import os |
|
import cv2 |
|
from numpy import array |
|
from numpy import expand_dims |
|
from numpy import zeros |
|
from numpy import ones |
|
from numpy import vstack |
|
from numpy.random import randn |
|
from numpy.random import randint |
|
from keras.datasets.mnist import load_data |
|
from keras.optimizer_v2.adam import Adam |
|
from keras.models import Sequential |
|
from keras.layers import Dense |
|
from keras.layers import Reshape |
|
from keras.layers import Flatten |
|
from keras.layers import Conv2D |
|
from keras.layers import Conv2DTranspose |
|
from keras.layers import LeakyReLU |
|
from keras.layers import Dropout |
|
from matplotlib import pyplot |
|
|
|
n_class = 1 #number of classes |
|
n_train_Tifinagh_mnist = 2000 |
|
|
|
def upload_data_Tfinagh_MNIST(path_name, number_of_class, number_of_images): |
|
X_Data = [] |
|
for i in range(number_of_class): |
|
images = os.listdir(path_name + str(i+11)) |
|
for j in range(number_of_images): |
|
img = cv2.imread(path_name + str(i+11)+ '/' + images[j], 0) |
|
X_Data.append(img) |
|
print("> the " + str(i) + "-th file is successfully uploaded.", end='\r') |
|
return array(X_Data) |
|
|
|
n_class = 1 #number of classes |
|
n_train_Tifinagh_mnist = 2000 |
|
|
|
def upload_data_Tfinagh_MNIST(path_name, num_of_class, number_of_images): |
|
X_Data = [] |
|
images = os.listdir(path_name + str(num_of_class)) |
|
for j in range(len(images)): |
|
img = cv2.imread(path_name + str(num_of_class) + '/' + images[j], 0) |
|
X_Data.append(img) |
|
return array(X_Data) |
|
|
|
def define_discriminator(in_shape=(28,28,1)): |
|
model = Sequential() |
|
model.add(Conv2D(64, (3,3), strides=(2, 2), padding='same', input_shape=in_shape)) |
|
model.add(LeakyReLU(alpha=0.2)) |
|
model.add(Dropout(0.4)) |
|
model.add(Conv2D(64, (3,3), strides=(2, 2), padding='same')) |
|
model.add(LeakyReLU(alpha=0.2)) |
|
model.add(Dropout(0.4)) |
|
model.add(Flatten()) |
|
model.add(Dense(1, activation='sigmoid')) |
|
# compile model |
|
opt = Adam(lr=0.0002, beta_1=0.5) |
|
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) |
|
return model |
|
|
|
def define_generator(latent_dim): |
|
model = Sequential() |
|
n_nodes = 128 * 7 * 7 |
|
model.add(Dense(n_nodes, input_dim=latent_dim)) |
|
model.add(LeakyReLU(alpha=0.2)) |
|
model.add(Reshape((7, 7, 128))) |
|
model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same')) |
|
model.add(LeakyReLU(alpha=0.2)) |
|
model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same')) |
|
model.add(LeakyReLU(alpha=0.2)) |
|
model.add(Conv2D(1, (7,7), activation='sigmoid', padding='same')) |
|
return model |
|
|
|
def define_gan(g_model, d_model): |
|
d_model.trainable = False |
|
model = Sequential() |
|
model.add(g_model) |
|
model.add(d_model) |
|
opt = Adam(lr=0.0002, beta_1=0.5) |
|
model.compile(loss='binary_crossentropy', optimizer=opt) |
|
return model |
|
|
|
def load_real_samples(num_class): |
|
trainX = upload_data_Tfinagh_MNIST('drive/MyDrive/DATA2/train_data/', num_class, n_train_Tifinagh_mnist) |
|
X = expand_dims(trainX, axis=-1) |
|
X = X.astype('float32') |
|
X = X / 255.0 |
|
return X |
|
|
|
def generate_real_samples(dataset, n_samples): |
|
ix = randint(0, dataset.shape[0], n_samples) |
|
X = dataset[ix] |
|
y = ones((n_samples, 1)) |
|
return X, y |
|
|
|
def generate_latent_points(latent_dim, n_samples): |
|
x_input = randn(latent_dim * n_samples) |
|
x_input = x_input.reshape(n_samples, latent_dim) |
|
return x_input |
|
|
|
def generate_fake_samples(g_model, latent_dim, n_samples): |
|
x_input = generate_latent_points(latent_dim, n_samples) |
|
X = g_model.predict(x_input) |
|
y = zeros((n_samples, 1)) |
|
return X, y |
|
|
|
def save_plot(examples, epoch, n=10): |
|
for i in range(n * n): |
|
pyplot.subplot(n, n, 1 + i) |
|
pyplot.axis('off') |
|
pyplot.imshow(examples[i, :, :, 0], cmap='gray_r') |
|
filename = 'generated_plot_e%03d.png' % (epoch+1) |
|
pyplot.savefig(filename) |
|
pyplot.close() |
|
|
|
def summarize_performance(epoch, g_model, d_model, dataset, latent_dim, n_samples=100): |
|
X_real, y_real = generate_real_samples(dataset, n_samples) |
|
_, acc_real = d_model.evaluate(X_real, y_real, verbose=0) |
|
x_fake, y_fake = generate_fake_samples(g_model, latent_dim, n_samples) |
|
_, acc_fake = d_model.evaluate(x_fake, y_fake, verbose=0) |
|
print('>Accuracy real: %.0f%%, fake: %.0f%%' % (acc_real*100, acc_fake*100)) |
|
#save_plot(x_fake, epoch) |
|
filename = 'generator_model_%03d.h5' % (epoch + 1) |
|
g_model.save(filename) |
|
|
|
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128): |
|
bat_per_epo = int(dataset.shape[0] / n_batch) |
|
half_batch = int(n_batch / 2) |
|
for i in range(n_epochs): |
|
for j in range(bat_per_epo): |
|
X_real, y_real = generate_real_samples(dataset, half_batch) |
|
X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch) |
|
X, y = vstack((X_real, X_fake)), vstack((y_real, y_fake)) |
|
d_loss, _ = d_model.train_on_batch(X, y) |
|
X_gan = generate_latent_points(latent_dim, n_batch) |
|
y_gan = ones((n_batch, 1)) |
|
g_loss = gan_model.train_on_batch(X_gan, y_gan) |
|
print('>%d, %d/%d, d=%.3f, g=%.3f' % (i+1, j+1, bat_per_epo, d_loss, g_loss)) |
|
if (i+1) % 10 == 0: |
|
summarize_performance(i, g_model, d_model, dataset, latent_dim) |
|
|
|
# size of the latent space |
|
latent_dim = 100 |
|
# create the discriminator |
|
d_model = define_discriminator() |
|
# create the generator |
|
g_model = define_generator(latent_dim) |
|
# create the gan |
|
gan_model = define_gan(g_model, d_model) |
|
# load image data |
|
dataset = load_real_samples(29) |
|
# train model |
|
train(g_model, d_model, gan_model, dataset, latent_dim) |
|
|
|
z = generate_latent_points(100, 9) |
|
im = g_model.predict(z) |
|
|
|
from matplotlib import pyplot as plt |
|
plt.figure(figsize=(9, 9)) |
|
for i in range(9): |
|
orig_map=plt.cm.get_cmap() |
|
|
|
# reversing the original colormap using reversed() function |
|
reversed_map = orig_map.reversed() |
|
plt.subplot(3, 3, i+1) |
|
plt.imshow(im[i, :, :, 0], cmap = reversed_map); |
|
plt.axis('off') |