Datasets:
Tasks:
Question Answering
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
f2fe64f
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +140 -0
- codah.py +142 -0
- dataset_infos.json +1 -0
- dummy/codah/1.0.0/dummy_data.zip +3 -0
- dummy/fold_0/1.0.0/dummy_data.zip +3 -0
- dummy/fold_1/1.0.0/dummy_data.zip +3 -0
- dummy/fold_2/1.0.0/dummy_data.zip +3 -0
- dummy/fold_3/1.0.0/dummy_data.zip +3 -0
- dummy/fold_4/1.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- question-answering
|
18 |
+
task_ids:
|
19 |
+
- multiple-choice-qa
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card Creation Guide
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
|
50 |
+
- **Repository:** [If the dataset is hosted on github or has a github homepage, add URL here]()
|
51 |
+
- **Paper:** [If the dataset was introduced by a paper or there was a paper written describing the dataset, add URL here (landing page for Arxiv paper preferred)]()
|
52 |
+
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
|
53 |
+
- **Point of Contact:** [If known, name and email of at least one person the reader can contact for questions about the dataset.]()
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
|
57 |
+
[More Information Needed]
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Languages
|
64 |
+
|
65 |
+
[More Information Needed]
|
66 |
+
|
67 |
+
## Dataset Structure
|
68 |
+
|
69 |
+
### Data Instances
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Data Fields
|
74 |
+
|
75 |
+
[More Information Needed]
|
76 |
+
|
77 |
+
### Data Splits
|
78 |
+
|
79 |
+
[More Information Needed]
|
80 |
+
## Dataset Creation
|
81 |
+
|
82 |
+
### Curation Rationale
|
83 |
+
|
84 |
+
[More Information Needed]
|
85 |
+
|
86 |
+
### Source Data
|
87 |
+
|
88 |
+
[More Information Needed]
|
89 |
+
|
90 |
+
#### Initial Data Collection and Normalization
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
#### Who are the source language producers?
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
### Annotations
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
#### Annotation process
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
#### Who are the annotators?
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
### Personal and Sensitive Information
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
## Considerations for Using the Data
|
115 |
+
|
116 |
+
### Social Impact of Dataset
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
### Discussion of Biases
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
### Other Known Limitations
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
## Additional Information
|
129 |
+
|
130 |
+
### Dataset Curators
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
### Licensing Information
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Citation Information
|
139 |
+
|
140 |
+
[More Information Needed]
|
codah.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""The COmmonsense Dataset Adversarially-authored by Humans (CODAH)"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import csv
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@inproceedings{chen2019codah,
|
26 |
+
title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},
|
27 |
+
author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},
|
28 |
+
booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},
|
29 |
+
pages={63--69},
|
30 |
+
year={2019}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense \
|
36 |
+
question-answering in the sentence completion style of SWAG. As opposed to other automatically \
|
37 |
+
generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback \
|
38 |
+
from a pre-trained model and use this information to design challenging commonsense questions. \
|
39 |
+
Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_URL = "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/"
|
43 |
+
_FULL_DATA_URL = _URL + "full_data.tsv"
|
44 |
+
|
45 |
+
QUESTION_CATEGORIES_MAPPING = {
|
46 |
+
"i": "Idioms",
|
47 |
+
"r": "Reference",
|
48 |
+
"p": "Polysemy",
|
49 |
+
"n": "Negation",
|
50 |
+
"q": "Quantitative",
|
51 |
+
"o": "Others",
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
class CodahConfig(datasets.BuilderConfig):
|
56 |
+
"""BuilderConfig for CODAH."""
|
57 |
+
|
58 |
+
def __init__(self, fold=None, **kwargs):
|
59 |
+
"""BuilderConfig for CODAH.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
fold: `string`, official cross validation fold.
|
63 |
+
**kwargs: keyword arguments forwarded to super.
|
64 |
+
"""
|
65 |
+
super(CodahConfig, self).__init__(**kwargs)
|
66 |
+
self.fold = fold
|
67 |
+
|
68 |
+
|
69 |
+
class Codah(datasets.GeneratorBasedBuilder):
|
70 |
+
"""The COmmonsense Dataset Adversarially-authored by Humans (CODAH)"""
|
71 |
+
|
72 |
+
VERSION = datasets.Version("1.0.0")
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
CodahConfig(name="codah", version=datasets.Version("1.0.0"), description="Full CODAH dataset", fold=None),
|
75 |
+
CodahConfig(
|
76 |
+
name="fold_0", version=datasets.Version("1.0.0"), description="Official CV split (fold_0)", fold="fold_0"
|
77 |
+
),
|
78 |
+
CodahConfig(
|
79 |
+
name="fold_1", version=datasets.Version("1.0.0"), description="Official CV split (fold_1)", fold="fold_1"
|
80 |
+
),
|
81 |
+
CodahConfig(
|
82 |
+
name="fold_2", version=datasets.Version("1.0.0"), description="Official CV split (fold_2)", fold="fold_2"
|
83 |
+
),
|
84 |
+
CodahConfig(
|
85 |
+
name="fold_3", version=datasets.Version("1.0.0"), description="Official CV split (fold_3)", fold="fold_3"
|
86 |
+
),
|
87 |
+
CodahConfig(
|
88 |
+
name="fold_4", version=datasets.Version("1.0.0"), description="Official CV split (fold_4)", fold="fold_4"
|
89 |
+
),
|
90 |
+
]
|
91 |
+
|
92 |
+
def _info(self):
|
93 |
+
return datasets.DatasetInfo(
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=datasets.Features(
|
96 |
+
{
|
97 |
+
"id": datasets.Value("int32"),
|
98 |
+
"question_category": datasets.features.ClassLabel(
|
99 |
+
names=["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"]
|
100 |
+
),
|
101 |
+
"question_propmt": datasets.Value("string"),
|
102 |
+
"candidate_answers": datasets.features.Sequence(datasets.Value("string")),
|
103 |
+
"correct_answer_idx": datasets.Value("int32"),
|
104 |
+
}
|
105 |
+
),
|
106 |
+
supervised_keys=None,
|
107 |
+
homepage="https://github.com/Websail-NU/CODAH",
|
108 |
+
citation=_CITATION,
|
109 |
+
)
|
110 |
+
|
111 |
+
def _split_generators(self, dl_manager):
|
112 |
+
if self.config.name == "codah":
|
113 |
+
data_file = dl_manager.download(_FULL_DATA_URL)
|
114 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": data_file})]
|
115 |
+
|
116 |
+
base_url = f"{_URL}cv_split/{self.config.fold}/"
|
117 |
+
_urls = {
|
118 |
+
"train": base_url + "train.tsv",
|
119 |
+
"dev": base_url + "dev.tsv",
|
120 |
+
"test": base_url + "test.tsv",
|
121 |
+
}
|
122 |
+
downloaded_files = dl_manager.download_and_extract(_urls)
|
123 |
+
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": downloaded_files["train"]}),
|
126 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"data_file": downloaded_files["dev"]}),
|
127 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_files["test"]}),
|
128 |
+
]
|
129 |
+
|
130 |
+
def _generate_examples(self, data_file):
|
131 |
+
with open(data_file, encoding="utf-8") as f:
|
132 |
+
rows = csv.reader(f, delimiter="\t")
|
133 |
+
for i, row in enumerate(rows):
|
134 |
+
question_category = QUESTION_CATEGORIES_MAPPING[row[0]] if row[0] != "" else -1
|
135 |
+
example = {
|
136 |
+
"id": i,
|
137 |
+
"question_category": question_category,
|
138 |
+
"question_propmt": row[1],
|
139 |
+
"candidate_answers": row[2:-1],
|
140 |
+
"correct_answer_idx": int(row[-1]),
|
141 |
+
}
|
142 |
+
yield i, example
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"codah": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "codah", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 571208, "num_examples": 2776, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/full_data.tsv": {"num_bytes": 485130, "checksum": "96689f2abf2f09eb91af50e2d8f92bb553e157601908a1cee83fe68670b5c3ea"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571208, "size_in_bytes": 1056338}, "fold_0": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "fold_0", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 344912, "num_examples": 1665, "dataset_name": "codah"}, "validation": {"name": "validation", "num_bytes": 114211, "num_examples": 556, "dataset_name": "codah"}, "test": {"name": "test", "num_bytes": 112109, "num_examples": 555, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_0/train.tsv": {"num_bytes": 293278, "checksum": "790edcdfcba7d07b66ae2f3074c9ed17239b1f0865962f1bea0e0768207f0d43"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_0/dev.tsv": {"num_bytes": 96963, "checksum": "96c69a4240e6b0ef1f2364aeaa9d549e1b36188814f63d52bbc678a57b855923"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_0/test.tsv": {"num_bytes": 94889, "checksum": "2065089015df59d7cf0328bdd32a9e2088ff66ab9639d926acf26a3b0203454e"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571232, "size_in_bytes": 1056362}, "fold_1": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "fold_1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 340990, "num_examples": 1665, "dataset_name": "codah"}, "validation": {"name": "validation", "num_bytes": 114211, "num_examples": 556, "dataset_name": "codah"}, "test": {"name": "test", "num_bytes": 116031, "num_examples": 555, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_1/train.tsv": {"num_bytes": 289356, "checksum": "99841c58cbef1afb8aff8bf4ee8827d0824c3e787ff55d9a365a39284edde7ec"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_1/dev.tsv": {"num_bytes": 96963, "checksum": "96c69a4240e6b0ef1f2364aeaa9d549e1b36188814f63d52bbc678a57b855923"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_1/test.tsv": {"num_bytes": 98811, "checksum": "0f63cf4b30a7bd01f44f466cfa072bd99156e9f9a9042ac659f87b11e9bdbebb"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571232, "size_in_bytes": 1056362}, "fold_2": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "fold_2", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 342293, "num_examples": 1665, "dataset_name": "codah"}, "validation": {"name": "validation", "num_bytes": 114211, "num_examples": 556, "dataset_name": "codah"}, "test": {"name": "test", "num_bytes": 114728, "num_examples": 555, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_2/train.tsv": {"num_bytes": 290657, "checksum": "79ea621ba442cb8ebb64bf06179a038cfbccc875947a49fca1a487ce79bdc652"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_2/dev.tsv": {"num_bytes": 96963, "checksum": "96c69a4240e6b0ef1f2364aeaa9d549e1b36188814f63d52bbc678a57b855923"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_2/test.tsv": {"num_bytes": 97510, "checksum": "285996f708245858789a9a99740de07cb20c33b8fb071e772a047907727ed0ac"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571232, "size_in_bytes": 1056362}, "fold_3": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "fold_3", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 342844, "num_examples": 1665, "dataset_name": "codah"}, "validation": {"name": "validation", "num_bytes": 114211, "num_examples": 556, "dataset_name": "codah"}, "test": {"name": "test", "num_bytes": 114177, "num_examples": 555, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_3/train.tsv": {"num_bytes": 291210, "checksum": "27e6a6b55770bde68cedb97f8046af2fa469ca6082eb3ffc803ab61b39555bae"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_3/dev.tsv": {"num_bytes": 96963, "checksum": "96c69a4240e6b0ef1f2364aeaa9d549e1b36188814f63d52bbc678a57b855923"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_3/test.tsv": {"num_bytes": 96957, "checksum": "eb91713dd8aaca7bf7997168bd072ea0aa55c947c91e6f0869f48a2904a3c8fd"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571232, "size_in_bytes": 1056362}, "fold_4": {"description": "The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.\n", "citation": "@inproceedings{chen2019codah,\n title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},\n author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},\n booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP},\n pages={63--69},\n year={2019}\n}\n", "homepage": "https://github.com/Websail-NU/CODAH", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_category": {"num_classes": 6, "names": ["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"], "names_file": null, "id": null, "_type": "ClassLabel"}, "question_propmt": {"dtype": "string", "id": null, "_type": "Value"}, "candidate_answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "codah", "config_name": "fold_4", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 342844, "num_examples": 1665, "dataset_name": "codah"}, "validation": {"name": "validation", "num_bytes": 114177, "num_examples": 555, "dataset_name": "codah"}, "test": {"name": "test", "num_bytes": 114211, "num_examples": 556, "dataset_name": "codah"}}, "download_checksums": {"https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_4/train.tsv": {"num_bytes": 291210, "checksum": "27e6a6b55770bde68cedb97f8046af2fa469ca6082eb3ffc803ab61b39555bae"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_4/dev.tsv": {"num_bytes": 96957, "checksum": "eb91713dd8aaca7bf7997168bd072ea0aa55c947c91e6f0869f48a2904a3c8fd"}, "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/cv_split/fold_4/test.tsv": {"num_bytes": 96963, "checksum": "96c69a4240e6b0ef1f2364aeaa9d549e1b36188814f63d52bbc678a57b855923"}}, "download_size": 485130, "post_processing_size": null, "dataset_size": 571232, "size_in_bytes": 1056362}}
|
dummy/codah/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa659c7c3e15efef7f8030cbeacb3b9788904323a8967831081aa64efd283c0
|
3 |
+
size 676
|
dummy/fold_0/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac95759be699d59d4dda4a428a77c44ab9801dfb643f1ce33505e70043945791
|
3 |
+
size 1823
|
dummy/fold_1/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09ee7049cb5d4f0c0ebe01da71dc07aca92735d78f237a7887095567f395d266
|
3 |
+
size 1823
|
dummy/fold_2/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f81d0267835980ab15319f23252277ef5cbc8283c30b9c4c53821771a350a17
|
3 |
+
size 2009
|
dummy/fold_3/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49038c44f750eee9fe4a2965542fa4c776d0303af9abbb99a7befdf7662ab07c
|
3 |
+
size 1809
|
dummy/fold_4/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a9f48da854b45290db468b7050aa1fc51df39bcf50c94027a7ff0ec3da42da0
|
3 |
+
size 1809
|