#!/usr/bin/env python3 """ Create metadata table for the elaborated GitHub Python dataset. This script parses the python_files_elaborated.txt file containing GitHub URLs and extracts repository metadata (owner, repo name, file path). It generates a CSV file with this information and prints statistics. The elaborated dataset contains more files than the licensed subset and may include repositories with various licenses (not just permissive ones). """ import csv import os import re import pandas as pd from collections import Counter, defaultdict from tqdm import tqdm from urllib.parse import urlparse # Input and output files ELABORATED_FILES_LIST = "python_files_elaborated.txt" LICENSED_FILES_LIST = "python_files.txt" OUTPUT_CSV = "python_files_elaborated_metadata.csv" # Regular expression to parse GitHub raw URLs # Format: https://raw.githubusercontent.com/OWNER/REPO/BRANCH/PATH GITHUB_RAW_PATTERN = r"https://raw\.githubusercontent\.com/([^/]+)/([^/]+)/[^/]+/(.*)" def parse_github_url(url): """ Parse a GitHub raw URL to extract owner, repo name, and file path. Args: url (str): GitHub raw URL Returns: tuple: (owner, repo_name, file_path) or None if URL doesn't match pattern """ match = re.match(GITHUB_RAW_PATTERN, url) if match: owner, repo_name, file_path = match.groups() return owner, repo_name, file_path return None def create_metadata_table(file_list_path): """ Create a metadata table from a list of GitHub URLs. Args: file_list_path (str): Path to file containing GitHub URLs Returns: list: List of dictionaries with metadata """ metadata = [] # Read URLs from file with open(file_list_path, "r") as f: urls = [line.strip() for line in f if line.strip()] print(f"Processing URLs from {file_list_path}...") # Parse each URL and extract metadata for url in tqdm(urls, desc="Parsing URLs"): parsed = parse_github_url(url) if parsed: owner, repo_name, file_path = parsed metadata.append({ "owner": owner, "repo_name": repo_name, "file_path": file_path, "url": url }) return metadata def generate_statistics(metadata, dataset_name): """ Generate and print statistics for the dataset. Args: metadata (list): List of dictionaries with metadata dataset_name (str): Name of the dataset for display """ # Count unique repositories and owners repos = set((item["owner"], item["repo_name"]) for item in metadata) owners = set(item["owner"] for item in metadata) # Count files by repository repo_counts = Counter((item["owner"], item["repo_name"]) for item in metadata) top_repos = repo_counts.most_common(10) # Count files by owner owner_counts = Counter(item["owner"] for item in metadata) top_owners = owner_counts.most_common(5) # Count file extensions extensions = Counter(os.path.splitext(item["file_path"])[1] for item in metadata) # Print statistics print(f"\n=== {dataset_name} Statistics ===") print(f"Total files: {len(metadata)}") print(f"Unique repositories: {len(repos)}") print(f"Unique repository owners: {len(owners)}") print("\nTop 10 repositories by file count:") for (owner, repo), count in top_repos: print(f" {owner}/{repo}: {count} files") print("\nFile extensions:") for ext, count in extensions.most_common(): if ext: # Skip empty extensions print(f" {ext}: {count} files") print("\nTop 5 repository owners:") for owner, count in top_owners: print(f" {owner}: {count} files") return { "total_files": len(metadata), "unique_repos": len(repos), "unique_owners": len(owners), "top_repos": top_repos, "top_owners": top_owners, "extensions": extensions } def compare_datasets(elaborated_stats, licensed_stats): """ Compare statistics between elaborated and licensed datasets. Args: elaborated_stats (dict): Statistics for elaborated dataset licensed_stats (dict): Statistics for licensed dataset """ print("\n=== Dataset Comparison ===") print(f"Elaborated dataset: {elaborated_stats['total_files']} files") print(f"Licensed dataset: {licensed_stats['total_files']} files") print(f"Additional files in elaborated dataset: {elaborated_stats['total_files'] - licensed_stats['total_files']} files") # Calculate percentage increase pct_increase = ((elaborated_stats['total_files'] / licensed_stats['total_files']) - 1) * 100 print(f"Percentage increase: {pct_increase:.1f}%") # Compare repositories print(f"\nElaborated dataset: {elaborated_stats['unique_repos']} repositories") print(f"Licensed dataset: {licensed_stats['unique_repos']} repositories") # Compare owners print(f"\nElaborated dataset: {elaborated_stats['unique_owners']} repository owners") print(f"Licensed dataset: {licensed_stats['unique_owners']} repository owners") # Find repositories unique to elaborated dataset elaborated_repos = set((owner, repo) for (owner, repo), _ in elaborated_stats['top_repos']) licensed_repos = set((owner, repo) for (owner, repo), _ in licensed_stats['top_repos']) unique_to_elaborated = elaborated_repos - licensed_repos if unique_to_elaborated: print("\nTop repositories unique to elaborated dataset:") for owner, repo in list(unique_to_elaborated)[:5]: print(f" {owner}/{repo}") def main(): # Process elaborated dataset elaborated_metadata = create_metadata_table(ELABORATED_FILES_LIST) # Save to CSV with open(OUTPUT_CSV, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["owner", "repo_name", "file_path", "url"], quoting=csv.QUOTE_MINIMAL) writer.writeheader() writer.writerows(elaborated_metadata) print(f"Metadata saved to {OUTPUT_CSV}") # Generate statistics for elaborated dataset elaborated_stats = generate_statistics(elaborated_metadata, "Elaborated Dataset") # Process licensed dataset for comparison if os.path.exists(LICENSED_FILES_LIST): licensed_metadata = create_metadata_table(LICENSED_FILES_LIST) licensed_stats = generate_statistics(licensed_metadata, "Licensed Dataset") # Compare datasets compare_datasets(elaborated_stats, licensed_stats) else: print(f"Warning: {LICENSED_FILES_LIST} not found. Cannot compare datasets.") if __name__ == "__main__": main()