Filter common ligands and ligands with <3 atoms
Browse filesalso expand multiple copies of the same ligand binding to the same
receptor into separate rows (e.g., one bound ligand per chain)
- README.md +11 -1
- data/pdb.parquet +2 -2
- parse_complexes.py +44 -13
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
## How to use the data sets
|
11 |
|
12 |
This dataset contains more about 80,000 unique pairs of protein sequences and ligand SMILES, and the coordinates
|
13 |
-
of their complexes from the PDB.
|
14 |
|
15 |
SMILES are assumed to be tokenized by the regex from P. Schwaller.
|
16 |
|
@@ -20,6 +20,16 @@ Every receptor coordinate maps onto the Calpha coordinate of that residue.
|
|
20 |
|
21 |
The dataset can be used to fine-tune a language model, all data comes from PDBind-cn.
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
### Use the already preprocessed data
|
24 |
|
25 |
Load a test/train split using
|
|
|
10 |
## How to use the data sets
|
11 |
|
12 |
This dataset contains more about 80,000 unique pairs of protein sequences and ligand SMILES, and the coordinates
|
13 |
+
of their complexes from the PDB.
|
14 |
|
15 |
SMILES are assumed to be tokenized by the regex from P. Schwaller.
|
16 |
|
|
|
20 |
|
21 |
The dataset can be used to fine-tune a language model, all data comes from PDBind-cn.
|
22 |
|
23 |
+
## Ligand selection criteria
|
24 |
+
|
25 |
+
Only ligands with
|
26 |
+
|
27 |
+
- at least 3 atoms,
|
28 |
+
- a molecular weight >= 100 Da,
|
29 |
+
- that don't occur more than 75 times in different PDB complexes (this includes common additives like PEG, ADP, ..)
|
30 |
+
|
31 |
+
are considered.
|
32 |
+
|
33 |
### Use the already preprocessed data
|
34 |
|
35 |
Load a test/train split using
|
data/pdb.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbe6a448b46a5e6c2dd1b32ca878b5a658505f06334c173aa7565a3a6a848413
|
3 |
+
size 988455052
|
parse_complexes.py
CHANGED
@@ -38,6 +38,28 @@ molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\
|
|
38 |
max_seq = 2046 # = 2048 - 2 (accounting for [CLS] and [SEP])
|
39 |
max_smiles = 510 # = 512 - 2
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def get_protein_sequence_and_coords(receptor):
|
42 |
calpha = receptor.select('calpha')
|
43 |
xyz = calpha.getCoords()
|
@@ -120,15 +142,20 @@ def process_ligand(ligand, res_name, expo_dict):
|
|
120 |
:param expo_dict: dictionary with LigandExpo
|
121 |
:return: molecule with bond orders assigned
|
122 |
"""
|
123 |
-
output = StringIO()
|
124 |
-
sub_mol = ligand.select(f"resname {res_name}")
|
125 |
sub_smiles = expo_dict['SMILES'][res_name]
|
126 |
template = AllChem.MolFromSmiles(sub_smiles)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def process_entry(df_dict, pdb_fn):
|
134 |
try:
|
@@ -141,6 +168,8 @@ def process_entry(df_dict, pdb_fn):
|
|
141 |
"""
|
142 |
protein, ligand = get_pdb_components(pdb_fn)
|
143 |
|
|
|
|
|
144 |
ligand_mols = []
|
145 |
ligand_names = []
|
146 |
|
@@ -148,19 +177,21 @@ def process_entry(df_dict, pdb_fn):
|
|
148 |
# filter ligands by molecular weight
|
149 |
res_name_list = list(set(ligand.getResnames()))
|
150 |
for res in res_name_list:
|
151 |
-
|
152 |
|
153 |
mol_wt = ExactMolWt(template)
|
154 |
natoms = template.GetNumAtoms()
|
155 |
|
156 |
-
if mol_wt >= mol_wt_cutoff and natoms >= min_atoms:
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
159 |
|
160 |
ligand_smiles = []
|
161 |
ligand_xyz = []
|
162 |
|
163 |
-
pdb_name = os.path.basename(pdb_fn).split('.')[-3][3:]
|
164 |
for mol, name in zip(ligand_mols, ligand_names):
|
165 |
print('Processing {} and {}'.format(pdb_name, name))
|
166 |
smi, xyz = tokenize_ligand(mol)
|
@@ -184,7 +215,7 @@ if __name__ == '__main__':
|
|
184 |
# read ligand table
|
185 |
df_dict = read_ligand_expo()
|
186 |
|
187 |
-
result = executor.map(partial(process_entry, df_dict), filenames, chunksize=
|
188 |
result = list(result)
|
189 |
|
190 |
# expand sequences and ligands
|
|
|
38 |
max_seq = 2046 # = 2048 - 2 (accounting for [CLS] and [SEP])
|
39 |
max_smiles = 510 # = 512 - 2
|
40 |
|
41 |
+
# filter out these common additives which occur in more than 75 complexes in the PDB
|
42 |
+
ubiquitous_ligands = ['PEG', 'ADP', 'FAD', 'NAD', 'ATP', 'MPD', 'NAP', 'GDP', 'MES',
|
43 |
+
'GTP', 'FMN', 'HEC', 'TRS', 'CIT', 'PGE', 'ANP', 'SAH', 'NDP',
|
44 |
+
'PG4', 'EPE', 'AMP', 'COA', 'MLI', 'FES', 'GNP', 'MRD', 'GSH',
|
45 |
+
'FLC', 'AGS', 'NAI', 'SAM', 'PCW', '1PE', 'TLA', 'BOG', 'CYC',
|
46 |
+
'UDP', 'PX4', 'NAG', 'IMP', 'POP', 'UMP', 'PLM', 'HEZ', 'TPP',
|
47 |
+
'ACP', 'LDA', 'ACO', 'CLR', 'BGC', 'P6G', 'LMT', 'OGA', 'DTT',
|
48 |
+
'POV', 'FBP', 'AKG', 'MLA', 'ADN', 'NHE', '7Q9', 'CMP', 'BTB',
|
49 |
+
'PLP', 'CAC', 'SIN', 'C2E', '2AN', 'OCT', '17F', 'TAR', 'BTN',
|
50 |
+
'XYP', 'MAN', '5GP', 'GAL', 'GLC', 'DTP', 'DGT', 'PEB', 'THP',
|
51 |
+
'BEZ', 'CTP', 'GSP', 'HED', 'ADE', 'TYD', 'TTP', 'BNG', 'IHP',
|
52 |
+
'FDA', 'PEP', 'ALF', 'APR', 'MTX', 'MLT', 'LU8', 'UTP', 'APC',
|
53 |
+
'BLA', 'C8E', 'D10', 'CHT', 'BO2', '3BV', 'ORO', 'MPO', 'Y01',
|
54 |
+
'OLC', 'B3P', 'G6P', 'PMP', 'D12', 'NDG', 'A3P', '78M', 'F6P',
|
55 |
+
'U5P', 'PRP', 'UPG', 'THM', 'SFG', 'MYR', 'FEO', 'PG0', 'CXS',
|
56 |
+
'AR6', 'CHD', 'WO4', 'C5P', 'UFP', 'GCP', 'HDD', 'SRT', 'STU',
|
57 |
+
'CDP', 'TCL', '04C', 'MYA', 'URA', 'PLG', 'MTA', 'BMP', 'SAL',
|
58 |
+
'TA1', 'UD1', 'OLA', 'BCN', 'LMR', 'BMA', 'OAA', 'TAM', 'MBO',
|
59 |
+
'MMA', 'SPD', 'MTE', 'AP5', 'TMP', 'PGA', 'GLA', '3PG', 'FUL',
|
60 |
+
'PQQ', '9TY', 'DUR', 'PPV', 'SPM', 'SIA', 'DUP', 'GTX', '1PG',
|
61 |
+
'GUN', 'ETF', 'FDP', 'MFU', 'G2P', 'PC', 'DST', 'INI']
|
62 |
+
|
63 |
def get_protein_sequence_and_coords(receptor):
|
64 |
calpha = receptor.select('calpha')
|
65 |
xyz = calpha.getCoords()
|
|
|
142 |
:param expo_dict: dictionary with LigandExpo
|
143 |
:return: molecule with bond orders assigned
|
144 |
"""
|
|
|
|
|
145 |
sub_smiles = expo_dict['SMILES'][res_name]
|
146 |
template = AllChem.MolFromSmiles(sub_smiles)
|
147 |
+
|
148 |
+
allres = ligand.select(f"resname {res_name}")
|
149 |
+
res = np.unique(allres.getResindices())
|
150 |
+
mols = []
|
151 |
+
for i in res:
|
152 |
+
sub_mol = ligand.select(f"resname {res_name} and resindex {i}")
|
153 |
+
output = StringIO()
|
154 |
+
writePDBStream(output, sub_mol)
|
155 |
+
pdb_string = output.getvalue()
|
156 |
+
rd_mol = AllChem.MolFromPDBBlock(pdb_string)
|
157 |
+
mols.append(AllChem.AssignBondOrdersFromTemplate(template, rd_mol))
|
158 |
+
return mols, template
|
159 |
|
160 |
def process_entry(df_dict, pdb_fn):
|
161 |
try:
|
|
|
168 |
"""
|
169 |
protein, ligand = get_pdb_components(pdb_fn)
|
170 |
|
171 |
+
pdb_name = os.path.basename(pdb_fn).split('.')[-3][3:]
|
172 |
+
|
173 |
ligand_mols = []
|
174 |
ligand_names = []
|
175 |
|
|
|
177 |
# filter ligands by molecular weight
|
178 |
res_name_list = list(set(ligand.getResnames()))
|
179 |
for res in res_name_list:
|
180 |
+
mols, template = process_ligand(ligand, res, df_dict)
|
181 |
|
182 |
mol_wt = ExactMolWt(template)
|
183 |
natoms = template.GetNumAtoms()
|
184 |
|
185 |
+
if mol_wt >= mol_wt_cutoff and natoms >= min_atoms and res not in ubiquitous_ligands:
|
186 |
+
if len(mols) > 1:
|
187 |
+
print('Found {} copies of {} ligand {}'.format(len(mols),pdb_name,res))
|
188 |
+
ligand_mols += mols
|
189 |
+
ligand_names += [res]*len(mols)
|
190 |
+
|
191 |
|
192 |
ligand_smiles = []
|
193 |
ligand_xyz = []
|
194 |
|
|
|
195 |
for mol, name in zip(ligand_mols, ligand_names):
|
196 |
print('Processing {} and {}'.format(pdb_name, name))
|
197 |
smi, xyz = tokenize_ligand(mol)
|
|
|
215 |
# read ligand table
|
216 |
df_dict = read_ligand_expo()
|
217 |
|
218 |
+
result = executor.map(partial(process_entry, df_dict), filenames, chunksize=2048)
|
219 |
result = list(result)
|
220 |
|
221 |
# expand sequences and ligands
|