josancamon commited on
Commit
6171d12
·
verified ·
1 Parent(s): 3ad7608

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - reinforcement-learning
4
+ - question-answering
5
+ language:
6
+ - en
7
+ size_categories:
8
+ - n<1K
9
+ tags:
10
+ - web-agents
11
+ - browser-automation
12
+ - human-demonstrations
13
+ - web-navigation
14
+ - multi-step-reasoning
15
+ license: mit
16
+ ---
17
+
18
+ # Mind2Web Subset - Human Demonstrations
19
+
20
+ A collection of human-demonstrated web navigation tasks with detailed interaction traces. This dataset captures real browser interactions including clicks, typing, scrolling, DOM states, screenshots, and HTTP requests for web agent training and evaluation.
21
+
22
+ ## Overview
23
+
24
+ This dataset contains tasks performed by humans in real web environments, capturing:
25
+ - **Golden trajectories**: Step-by-step sequences of actions (clicks, typing, navigation)
26
+ - **Rich interaction data**: DOM states, screenshots, videos, and HTTP request captures
27
+ - **Evaluation checkpoints**: Intermediate validation points for multi-step tasks
28
+ - **Reproducible environments**: Bundled browser states for agent exploration
29
+
30
+ ## Dataset Structure
31
+
32
+ Each task includes:
33
+ - `task_id`: Unique identifier
34
+ - `task_description`: Natural language description of the task
35
+ - `task_type`: Category of task (information retrieval, action-based, etc.)
36
+ - `trajectory`: Sequence of tool calls representing the golden trajectory
37
+ - `checkpoints`: Validation points for partial credit evaluation
38
+ - `reference_*`: URLs to supporting data (screenshots, videos, DOM snapshots, HTTP captures)
39
+
40
+ ## Use Cases
41
+
42
+ - Training web agents with human demonstrations
43
+ - Evaluating agent performance with granular checkpoints
44
+ - Research on multi-hop and long-horizon web tasks
45
+ - Reinforcement learning with reproducible web environments
46
+
47
+ ## Collection Methodology
48
+
49
+ Tasks were collected using a custom browser automation tool that captures:
50
+ - Every user interaction (clicks, typing, scrolling)
51
+ - DOM states at each step
52
+ - Screenshots and video recordings
53
+ - Intercepted HTTP/HTTPS requests
54
+ - Complete browser session data for environment reproduction
55
+
56
+ For detailed information about the collection tool and methodology, visit:
57
+ **[Building The Collection Tool](https://joan.so/learning/ml/research/browser-automation/1+Building+The+Collection+Tool)**
58
+
59
+ ## Citation
60
+
61
+ If you use this dataset, please cite:
62
+
63
+ ```bibtex
64
+ @misc{mind2web-subset-human,
65
+ title={Mind2Web Subset - Human Demonstrations},
66
+ author={Joan Cabezas},
67
+ year={2025},
68
+ url={https://joan.so/learning/ml/research/browser-automation/1+Building+The+Collection+Tool}
69
+ }
70
+ ```
71
+
72
+ ## License
73
+
74
+ MIT License - See repository for details.