File size: 6,480 Bytes
3a9b866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14762a5e-0193-4de6-ac54-549b0309dd2c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import asyncio\n",
    "import json\n",
    "import os\n",
    "import random\n",
    "import uuid\n",
    "from glob import glob\n",
    "\n",
    "import aiofiles\n",
    "import nest_asyncio\n",
    "from pymongo import MongoClient"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a93723c1-0972-4f52-ae23-8e44e7861230",
   "metadata": {},
   "outputs": [],
   "source": [
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12db86f4-0321-4f87-be6e-0088fe7aac3e",
   "metadata": {},
   "outputs": [],
   "source": [
    "output_dir = os.path.abspath(\"./output_tryagain\")\n",
    "\n",
    "jsonfiles = glob(os.path.join(output_dir, \"*.json\"))\n",
    "\n",
    "len(jsonfiles)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ee6e661-9d22-4635-a912-92a15d21b5f0",
   "metadata": {},
   "outputs": [],
   "source": [
    "client = MongoClient(r'mongodb://root:example@mongo:27017/')\n",
    "\n",
    "db = client['govgis-nov2023']\n",
    "\n",
    "services_collection = db.services\n",
    "\n",
    "layers_collection = db.layers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5baaccb7-ef62-4d0c-b936-b6ef70befc44",
   "metadata": {},
   "outputs": [],
   "source": [
    "errors = []\n",
    "\n",
    "\n",
    "def create_uuid(input_str: str) -> str:\n",
    "    # Consistent random UUIDs based on input string\n",
    "    # https://nathanielknight.ca/articles/consistent_random_uuids_in_python.html\n",
    "    random.seed(input_str)\n",
    "    return str(uuid.UUID(bytes=bytes(random.getrandbits(8) for _ in range(16)), version=4))\n",
    "\n",
    "\n",
    "async def read_data():\n",
    "    # Async generator to yield file content one by one\n",
    "    for f in jsonfiles:\n",
    "        async with aiofiles.open(f, 'r') as infile:\n",
    "            content = await infile.read()\n",
    "            yield json.loads(content)\n",
    "\n",
    "\n",
    "def process_metadata(metadata, additional_fields={}):\n",
    "    # Process metadata and add any additional fields\n",
    "    processed_md = {k: v for k, v in metadata.items() if k not in ['folders', 'services', 'layers']}\n",
    "    processed_md.update(additional_fields)\n",
    "    processed_md[\"original_id\"] = processed_md.get(\"id\", None)\n",
    "    processed_md[\"id\"] = processed_md[\"hash\"]\n",
    "    del processed_md[\"hash\"]\n",
    "\n",
    "    return processed_md\n",
    "\n",
    "\n",
    "def get_type(layer: dict) -> str:\n",
    "    return layer.get(\"type\", \"unknown\").lower().replace(\" \", \"_\").strip()\n",
    "\n",
    "\n",
    "async def main():\n",
    "    async for server in read_data():\n",
    "        server_md = process_metadata(server[\"metadata\"],\n",
    "                                     {\"url\": server['metadata']['url'], \"hash\": create_uuid(server['metadata']['url'])})\n",
    "        for service in server['services']:\n",
    "            service_md = process_metadata(service[\"metadata\"],\n",
    "                                          {\"url\": service['url'], \"hash\": create_uuid(service['url']),\n",
    "                                           \"server\": server_md})\n",
    "            service_md['layers'] = []\n",
    "\n",
    "            layer_dict = {}\n",
    "\n",
    "            for layer in service['metadata']['layers']:\n",
    "                layer_md = process_metadata(layer, {\"url\": layer['url'], \"hash\": create_uuid(layer['url']),\n",
    "                                                    \"service\": service_md[\"id\"]})\n",
    "                layer_type = get_type(layer)\n",
    "                service_md['layers'].append(dict(type=layer_type, layer_id=layer_md['id']))\n",
    "                if layer_type not in layer_dict:\n",
    "                    layer_dict[layer_type] = []\n",
    "                layer_dict[layer_type].append(layer_md)\n",
    "\n",
    "            if len(service_md) > 0:\n",
    "                services_collection.insert_one(service_md)\n",
    "\n",
    "            for k, layers in layer_dict.items():\n",
    "                if len(layers) > 0:\n",
    "                    try:\n",
    "                        db[k].insert_many(layers)\n",
    "                    except OverflowError:\n",
    "                        for layer in layers:\n",
    "                            try:\n",
    "                                db[k].insert_one(layer)\n",
    "                            except OverflowError:\n",
    "                                for c in ['drawingInfo', 'classBreakInfos']:\n",
    "                                    if c in layer:\n",
    "                                        del layer[c]\n",
    "                                try:\n",
    "                                    db[k].insert_one(layer)\n",
    "                                except OverflowError:\n",
    "                                    errors.append(layer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "id": "67190800-bbfd-4bd3-a616-ec6b57050c96",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 4min 22s, sys: 25.6 s, total: 4min 48s\n",
      "Wall time: 6min 25s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "\n",
    "# Run the async main function\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "id": "56bc67d5-fd8d-4dda-9939-111ce484bb3f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(errors)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}